已知數(shù)列{an}的前n項和,那么數(shù)列{an}( )
A.一定是等比數(shù)列
B.一定是等差數(shù)列
C.是等差數(shù)列或等比數(shù)列
D.既不是等差數(shù)列也不是等比數(shù)列
【答案】分析:由題意可知,當a=1時,Sn=0,判斷數(shù)列是否是等差數(shù)列;當a≠1時,利用 ,判斷數(shù)列{an}是等差數(shù)列還是等比數(shù)列.
解答:解:①當a=1時,Sn=0,
且a1=a-1=0,
an=Sn-Sn-1=(an-1)-(an-1-1)=0,(n>1)
an-1=Sn-1-Sn-2=(an-1-1)-(an-2-1)=0,
∴an-an-1=0,
∴數(shù)列{an}是等差數(shù)列.
②當a≠1時,
a1=a-1,
an=Sn-Sn-1=(an-1)-(an-1-1)=an-an-1,(n>1)
an-1=Sn-1-Sn-2=(an-1-1)-(an-2-1)=an-1-an-2,(n>2)
,(n>2)
∴數(shù)列{an}是等比數(shù)列.
綜上所述,數(shù)列{an}或是等差數(shù)列或是等比數(shù)列.
故選C.
點評:本題主要考查了等比數(shù)列等差數(shù)列的判定,同時考查了分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

19、已知數(shù)列{an}的前n項和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+n+1,那么它的通項公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、已知數(shù)列{an}的前n項和為Sn=3n+a,若{an}為等比數(shù)列,則實數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項公式an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊答案