【題目】如圖,在三棱錐中,平面 平面, , , 分別為, 的中點.

1)求證: 平面;

2)求證:平面 平面;

3)求三棱錐的體積.

【答案】(1)證明過程見解析;(2)證明過程見解析;(3

【解析】試題分析:(1)通過中位線的性質證明線線平行,再通過線線平行證明線面平行;(2)通過證明,進而證明平面,再通過線面垂直證明面面垂直;(3)求三棱錐的體積時,觀察將哪個面作為底面比較合適,較容易求出,通過前面兩問的鋪墊,發(fā)現(xiàn)將面作為底面較為合適,從而可求解.

試題解析:

1)證明: , 分別為的中點,

,

平面, 平面,

平面.

(2) ,且的中點,.

又平面平面,

平面

平面,

平面平面.

(3) 因為,且,

所以

,又, 所以

由(2)知: 平面,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】四名同學根據(jù)各自的樣本數(shù)據(jù)研究變量之間的相關關系,并求得回歸直線方程和相關系數(shù),分別得到以下四個結論:

其中,一定不正確的結論序號是( )

A. ②③ B. ①④ C. ①②③ D. ②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓 的離心率為, 為橢圓的右焦點, , .

(Ⅰ)求橢圓的方程;

(Ⅱ)設為原點, 為橢圓上一點, 的中點為,直線與直線交于點,過,交直線于點,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,的中點.

(1),求證:;

(2),且,點在線段上,試確定點的位置,使二面角大小為,并求出的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了分析某個高三學生的學習狀態(tài),對其下一階段的學習提供指導性建議.現(xiàn)對他前次考試的數(shù)學成績、物理成績進行分析.下面是該生次考試的成績.

數(shù)學

108

103

137

112

128

120

132

物理

74

71

88

76

84

81

86

(Ⅰ)他的數(shù)學成績與物理成績哪個更穩(wěn)定?請給出你的說明;

(Ⅱ)已知該生的物理成績與數(shù)學成績是線性相關的,求物理成績與數(shù)學成績的回歸直線方程

(Ⅲ)若該生的物理成績達到90分,請你估計他的數(shù)學成績大約是多少?

(附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)安排甲乙丙丁戊5名學生分別擔任語文、數(shù)學、英語、物理、化學學科的科代表,要求甲不當語文科代表,乙不當數(shù)學科代表,若丙當物理科代表則丁必須當化學科代表,則不同的選法共有多少種( )

A. 53 B. 67 C. 85 D. 91

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,過點的直線的參數(shù)方程為為參數(shù)),直線與曲線相交于兩點.

1)寫出曲線的直角坐標方程和直線的普通方程;

2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩企業(yè)生產(chǎn)同一種型號零件,按規(guī)定該型號零件的質量指標值落在內(nèi)為優(yōu)質品.從兩個企業(yè)生產(chǎn)的零件中各隨機抽出了500件,測量這些零件的質量指標值,得結果如下表:

甲企業(yè):

乙企業(yè):

(1)已知甲企業(yè)的500件零件質量指標值的樣本方差,該企業(yè)生產(chǎn)的零件質量指標值服從正態(tài)分布,其中近似為質量指標值的樣本平均數(shù)(注:求時,同一組數(shù)據(jù)用該區(qū)間的中點值作代表),近似為樣本方差,試根據(jù)該企業(yè)的抽樣數(shù)據(jù),估計所生產(chǎn)的零件中,質量指標值不低于71.92的產(chǎn)品的概率.(精確到0.001)

(2)由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,并問能否在犯錯誤的概率不超過0.01的前提下,認為“兩個分廠生產(chǎn)的零件的質量有差異”.

附注:

參考數(shù)據(jù): ,

參考公式: , ,

.

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在等腰直角三角形中, , 的中點,點上,且,現(xiàn)沿折起到的位置,使,點上,且.

(1)求證: 平面

(2)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案