已知長為m(m>0)的線段P1P2兩端點上在y2=4x上移動.
(1)求P1P2中點M的軌跡方程;
(2)求M點到y(tǒng)軸距離的最小值及對應點M的坐標.
(1)設P1(t12,2t1),P2(t22,2t2),P1P2中點為M(x,y),則
x=
1
2
(
t21
+
t22
)
…①y=t1+t2…②
而|P1P2|=m∴(t12-t222+(2t1-2t22=m2…③
由①,②,③(4x-y2)(y2+4)=m2…④
這就是P1P2中點的軌跡方程.
(2)由④:x=
1
4
(y2+
m2
y2+4
)=
1
4
[(y2+4)+
m2
y2+4
]-1

∵y2+4∈[4,+∞)
當m≥4時,(y2+4)+
m2
y2+4
≥2m,當僅當y2+4=m,即y=±
m-4
時,
取“=”號.此時:xmin=
m-2
2
.M點的坐標為(
m-2
2
,±
m-4
)

當m<4時,由x-
m2
16
=
1
4
(y2+
m2
y2+4
-
m2
4
)=
y2(4y2+16-m2)
16(y2+4)

∵0<m<4∴y2+16-m2>0,當僅當y=0時,x-
m2
16
=0

此時,xmin=
m2
16
,對應M點(
m2
16
,0)

∴當m≥4時,M到y(tǒng)軸距離最小值為
m-2
2
,M點坐標為(
m-2
2
,±
m-4
)

當0<m<4時,M到y(tǒng)軸距離最小值為
m2
16
,M點坐標為(
m2
16
,0)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知圓C:x2+y2+2x-4y-4=0,
(1)若直線l過點A(1,0)且被圓C截得的弦長為2,求直線的方程;
(2)已知圓M過圓C的圓心,且與(1)中直線l相切,若圓M的圓心在直線y=x+1上,求圓M的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C的圓心在射線3x-y=0(x≥0)上,圓C與x軸相切,且被直線x-y=0截得的弦長為2
7

(1)求圓C的方程;
(2)點為圓C上任意一點,不等式x+y+m≥0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知長為m(m>0)的線段P1P2兩端點上在y2=4x上移動.
(1)求P1P2中點M的軌跡方程;
(2)求M點到y(tǒng)軸距離的最小值及對應點M的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:2004-2005學年重慶一中高二(上)期末數(shù)學試卷(理科)(解析版) 題型:解答題

已知長為m(m>0)的線段P1P2兩端點上在y2=4x上移動.
(1)求P1P2中點M的軌跡方程;
(2)求M點到y(tǒng)軸距離的最小值及對應點M的坐標.

查看答案和解析>>

同步練習冊答案