9.若實(shí)數(shù)a,b滿足$\frac{1}{a}+\frac{2}=2\sqrt{ab}$,則ab的最小值為$\sqrt{2}$.

分析 利用基本不等式的性質(zhì)即可得出.

解答 解:∵實(shí)數(shù)a,b滿足$\frac{1}{a}+\frac{2}=2\sqrt{ab}$,∴a,b>0.
∴$2\sqrt{ab}$≥$2\sqrt{\frac{1}{a}•\frac{2}}$,解得ab≥$\sqrt{2}$,當(dāng)且僅當(dāng)b=2a=$\frac{2}{\root{4}{2}}$時(shí)取等號(hào).
則ab的最小值$\sqrt{2}$.
故答案為:$\sqrt{2}$.

點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列命題:
(1)“若am2≥bm2,則a≥b”的否命題;
(2)“全等三角形面積相等”的逆命題;
(3)“若a>1,則關(guān)于x的不等式ax2≥0的解集為R”的逆否命題;
其中正確命題的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知各項(xiàng)為正數(shù)的數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn>1,6Sn=(an+1)(an+2)(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{a{{\;}_{2}a}_{3}}$+…+$\frac{1}{a{{\;}_{n}a}_{n+1}}$<$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖,將正方形ABCD沿對(duì)角線AC折成一個(gè)直二面角,則異面直線AB和CD所成的角是( 。
 
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)x=3+4i,則復(fù)數(shù)z=x-|x|-(1-i) 的虛部為( 。
A.3B.-3+5iC.5iD.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)$f(x)=sin(\frac{π}{3}x+φ)(|φ|<\frac{π}{2})$的圖象關(guān)于直線x=1對(duì)稱,把f(x)的圖象向右平移3個(gè)單位長(zhǎng)度后,所得圖象對(duì)應(yīng)的函數(shù)解析式為( 。
A.y=sin($\frac{π}{3}$x+$\frac{π}{6}$)B.y=sin($\frac{π}{3}$x-$\frac{π}{6}$)C.y=cos($\frac{π}{3}$x+$\frac{π}{6}$)D.y=sin($\frac{π}{3}$x-$\frac{5π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知命題“p且q”是真命題,則下列命題:①p或q;②p且¬q;③¬p或q;④¬p且q;其中真命題的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.“函數(shù)f(x)=ax+3在(-1,2)上存在零點(diǎn)”是“3<a<4”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知集合M={x|x2-3x-18≤0],N={x|1-a≤x≤2a+1}.
(1)若a=3,求M∩N和∁RN;
(2)若M∩N=N,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案