20.已知函數(shù)f(x)=cosx(sinx+cosx)-$\frac{1}{2}$.
(1)若0<α<$\frac{π}{2}$,且sinα=$\frac{\sqrt{2}}{2}$,求f(α)的值;
(2)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.

分析 (1)根據(jù)題意,利用sinα求出cosα的值,再計(jì)算f(α)的值;
(2)化簡(jiǎn)函數(shù)f(x),求出f(x)的最小正周期與單調(diào)增區(qū)間即可.

解答 解:(1)∵0<α<$\frac{π}{2}$,且sinα=$\frac{\sqrt{2}}{2}$,
∴cosα=$\frac{\sqrt{2}}{2}$,
∴f(α)=cosα(sinα+cosα)-$\frac{1}{2}$
=$\frac{\sqrt{2}}{2}$×($\frac{\sqrt{2}}{2}$+$\frac{\sqrt{2}}{2}$)-$\frac{1}{2}$
=$\frac{1}{2}$;
(2)∵函數(shù)f(x)=cosx(sinx+cosx)-$\frac{1}{2}$
=sinxcosx+cos2x-$\frac{1}{2}$
=$\frac{1}{2}$sin2x+$\frac{1+cos2x}{2}$-$\frac{1}{2}$
=$\frac{1}{2}$(sin2x+cos2x)
=$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$),
∴f(x)的最小正周期為T=$\frac{2π}{2}$=π;
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,k∈Z,
解得kπ-$\frac{3π}{8}$≤x≤kπ+$\frac{π}{8}$,k∈Z;
∴f(x)的單調(diào)增區(qū)間為[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈Z.

點(diǎn)評(píng) 本題考查了三角函數(shù)的化簡(jiǎn)以及圖象與性質(zhì)的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知直線l:kx+y+1=0(k∈R),則原點(diǎn)到這條直線距離的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某校高三共有男生600名,從所有高三男生中隨機(jī)抽取40名測(cè)量身高(單位:cm)作為樣本,得到頻率分布表與頻率分布直方圖(部分)如表:
 分組頻數(shù) 頻率 
[150,160) 2 
[160,170) n1 f1
[170,180) 14 
[180,190) n2 f2
[190,200] 6 
(Ⅰ)求n1、n2、f1、f2;
(Ⅱ)試估計(jì)身高不低于180cm的該校高三男生人數(shù),并說(shuō)明理由;
(Ⅲ)從抽取的身高不低于185cm的男生中任取2名參加選拔性測(cè)試,已知至少有一個(gè)身高不低于190cm的學(xué)生的概率為$\frac{9}{11}$,求抽取身高不低于185cm的男生人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)f(x)=$\frac{1}{3}$x3+3x2+ax,若g(x)=$\frac{1}{{4}^{x}}$,對(duì)任意x1∈[$\frac{1}{2}$,1],存在x2∈[$\frac{1}{2}$,2],使得f′(x1)≤g(x2)成立,則實(shí)數(shù)a的取值范圍為( 。
A.[-$\frac{11}{4}$,+∞)B.(-∞,-$\frac{13}{2}$]C.(-∞,-$\frac{11}{4}$]D.[-$\frac{13}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知x,y滿足約束條件$\left\{{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{2x-y≤2}\end{array}}\right.$,則目標(biāo)函數(shù)z=2x+y的最大值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知等比數(shù)列{an}前n項(xiàng)和為Sn,且S4=16,S8=17,則公比q=$±\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知圓C:x2-2x+y2=0,則圓心坐標(biāo)為(1,0);若直線l過(guò)點(diǎn)(-1,0)且與圓C相切,則直線l的方程為y=±$\frac{\sqrt{3}}{3}$(x+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知拋物線y2=2px(p>0)的過(guò)焦點(diǎn)的弦為AB,且|AB|=6,xA是點(diǎn)A的橫坐標(biāo),xB是B點(diǎn)的橫坐標(biāo),又xA+xB=2,則p=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知點(diǎn)A是拋物線C:x2=2px(p>0)上一點(diǎn),O為坐標(biāo)原點(diǎn),若A,B是以點(diǎn)M(0,10)為圓心,|OA|的長(zhǎng)為半徑的圓與拋物線C的兩個(gè)公共點(diǎn),且△ABO為等邊三角形,則p的值是$\frac{5}{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案