設(shè)F為拋物線y2=2px(p>0)的焦點(diǎn),R,S,T為該拋物線上三點(diǎn),若
FR
+
FS
+
FT
=
0
,且|
FR
|+|
FS
|+|
ST
|=6.
(Ⅰ)求拋物線y2=2px的方程;
(Ⅱ)M點(diǎn)的坐標(biāo)為(m,0)其中m>0,過點(diǎn)F作斜率為k1的直線與拋物線交于A,B兩點(diǎn),A,B兩點(diǎn)的橫坐標(biāo)均不為m,連接AM、BM并延長交拋物線于C、D兩點(diǎn),設(shè)直線CD的斜率為k2
k1
k2
=4,求m的值.
考點(diǎn):直線與圓錐曲線的綜合問題
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(Ⅰ)利用
FR
+
FS
+
FT
=
0
,且|
FR
|+|
FS
|+|
ST
|=6,結(jié)合雪亮知識(shí)及拋物線的定義,即可求拋物線y2=2px的方程;
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),利用
k1
k2
=4,可得y1+y2=
1
4
(y3+y4).設(shè)AC所在直線方程為x=ty+m,代入拋物線方程,求出y1y3=-4m,同理y2y4=-4m,進(jìn)而可得y1y2=-m,設(shè)AB所在直線方程為x=ty+1,代入拋物線方程,即可得出結(jié)論.
解答: 解:(Ⅰ)設(shè)R(xR,yR),S(xS,yS),T(xT,yT),則
FR
+
FS
+
FT
=
0
,
∴xR+xS+xT=
3
2
p
,
∴|
FR
|+|
FS
|+|
ST
|=xR+xS+xT+
3
2
p
=3p=6,
∴p=2,
∴拋物線的方程為y2=4x;
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),則
k1=
y1-y2
x1-x2
=
4
y1+y2
,k2=
4
y3+y4
,
k1
k2
=4,
∴y1+y2=
1
4
(y3+y4).
設(shè)AC所在直線方程為x=ty+m,代入拋物線方程,可得y2-4ty-4m=0,
∴y1y3=-4m,
同理y2y4=-4m,
∴y1+y2=
1
4
-4m
y1
+
-4m
y2
),
∴y1y2=-m,
設(shè)AB所在直線方程為x=ty+1,代入拋物線方程,可得y2-4ty-4=0,
∴y1y2=-4,
∴m=4.
點(diǎn)評(píng):本題考查拋物線方程,考查直線與拋物線的位置關(guān)系,考查韋達(dá)定理,考查學(xué)生分析解決問題的能力,正確運(yùn)用韋達(dá)定理是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,某旅游景點(diǎn)有一座風(fēng)景秀麗的山峰,山上有一條筆直的山路BC和一條索道AC,小王和小李打算不坐索道,而是花2個(gè)小時(shí)的時(shí)間進(jìn)行徒步攀登.已知∠ABC=120°,∠ADC=150°,BD=1(千米),AC=3(千米).假設(shè)小王和小李徒步攀登的速度為每小時(shí)1200米,請(qǐng)問:兩位登山愛好者能否在2個(gè)小時(shí)內(nèi)徒步登上山峰.(即從B點(diǎn)出發(fā)到達(dá)C點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式:2x2+kx-k≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x>0,y>0,且
x
x
+
y
)=3
y
x
+5
y
),求
2x+2
xy
+3y
x-
xy
+y
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長為2,離心率為
2
2
.過點(diǎn)M(2,0)的直線l與橢圓C相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)求
OA
OB
的取值范圍;
(Ⅲ)若B點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)是N,證明:直線AN恒過一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解甲、乙兩個(gè)快遞公司的工作狀況,假設(shè)同一個(gè)公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機(jī)抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結(jié)果中隨機(jī)抽取10天的數(shù)據(jù),制表如下:
甲公司某員工A 乙公司某員工B
3 9 6 5 8 3 3 2 3 4 6 6 6 7 7
0 1 4 4 2 2 2
每名快遞員完成一件貨物投遞可獲得的勞務(wù)費(fèi)情況如下:甲公司規(guī)定每件4.5元;乙公司規(guī)定每天35件以內(nèi)(含35件)的部分每件4元,超出35件的部分每件7元.
(Ⅰ)根據(jù)表中數(shù)據(jù)寫出甲公司員工A在這10天投遞的快遞件數(shù)的平均數(shù)和眾數(shù);
(Ⅱ)為了解乙公司員工B的每天所得勞務(wù)費(fèi)的情況,從這10天中隨機(jī)抽取1天,他所得的勞務(wù)費(fèi)記為X(單位:元),求X的分布列和數(shù)學(xué)期望;
(Ⅲ)根據(jù)表中數(shù)據(jù)估算兩公司的每位員工在該月所得的勞務(wù)費(fèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(diǎn)M是橢圓x2+4y2=4上的一動(dòng)點(diǎn),點(diǎn)A(t,0)是橢圓長軸上的一點(diǎn),若|MA|的最小值為d,試求函數(shù)d=f(t)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)x,y滿足x+y=1,則
4
x
+
x
y
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=arctan
x
-
π
4
的值域是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案