已知函數(shù),函數(shù)的最小值為h(a).

(1)求h(a)的解析式;

(2)是否存在實(shí)數(shù)m,n同時(shí)滿足下列兩個(gè)條件:①m>n>3;②當(dāng)h(a)的定義域?yàn)閇n,m]時(shí),值域?yàn)閇n2,m2]?若存在,求出m,n的值;若不存在,請(qǐng)說(shuō)明理由

答案:
解析:

  解析:(1)由,知,令  1分

  ,則的對(duì)稱軸為,故有:

  ①當(dāng)時(shí),的最小值

  ②當(dāng)時(shí),的最小值

  ③當(dāng)時(shí),的最小值

  綜述,  7分

  (2)當(dāng)時(shí),.故時(shí),上為減函數(shù).

  所以上的值域?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/4878/0018/333e108d03b9c0d4b3aef746fe735d44/C/Image100.gif" width=80 height=26>  9分

  由題,則有,兩式相減得,又

  所以,這與矛盾.故不存在滿足題中條件的的值  12分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:若函數(shù)f(x)對(duì)于其定義域內(nèi)的某一數(shù)x0,有f(x0)=x0,則稱x0是f(x)的一個(gè)不動(dòng)點(diǎn).已知函數(shù)f(x)=ax2+(b+1)x+b-1(a≠0).
(1)當(dāng)a=1,b=-2時(shí),求函數(shù)f(x)的不動(dòng)點(diǎn);
(2)若對(duì)任意的實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)不動(dòng)點(diǎn),求a的取值范圍;
(3)在(2)的條件下,若y=f(x)圖象上兩個(gè)點(diǎn)A、B的橫坐標(biāo)是函數(shù)f(x)的不動(dòng)點(diǎn),且A、B的中點(diǎn)C在函數(shù)g(x)=-x+
a
5a2-4a+1
的圖象上,求b的最小值.
(參考公式:A(x1,y1),B(x2,y2)的中點(diǎn)坐標(biāo)為(
x1+x2
2
,
y1+y2
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)是定義在R上的周期函數(shù),周期為5,函數(shù)y=f(x)(-1≤x≤1)是奇函數(shù),又知y=f(x)在[0,1]上是一次函數(shù),在[1,4]上是二次函數(shù),且在x=2時(shí)函數(shù)取得最小值-5,
(1)求f(1)+f(4)的值;
(2)求y=f(x),x∈[1,4]上的解析式;
(3)求y=f(x)在[4,9]上的解析式,并求函數(shù)y=f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|4x-x2|(x∈R),對(duì)于任意的正實(shí)數(shù)t∈(0,b],定義:函數(shù)f(x)在[0,t]上的最小值為N(t),函數(shù)f(x)在[0,t]上的最大值為M(t),現(xiàn)若存在最小正整數(shù)m,使得M(t)-N(t)≤m•t對(duì)任意的正實(shí)數(shù)t∈(0,b]成立,則稱函數(shù)f(x)為區(qū)間(0,b]的“m階收縮函數(shù)”
(1)當(dāng)t∈(0,1]時(shí),試寫(xiě)出N(t),M(t)的表達(dá)式,并判斷函數(shù)f(x)是否為(0,1]上的“m階收縮函數(shù)”,如果是,請(qǐng)寫(xiě)出對(duì)應(yīng)的m的值;(只寫(xiě)出相應(yīng)結(jié)論,不要求證明過(guò)程)
(2)若函數(shù)f(x)是(0,b]上的4階收縮函數(shù),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆吉林省吉林市高三開(kāi)學(xué)摸底考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù),其圖象相鄰的兩條對(duì)稱軸方程為,則(    )

A.的最小正周期為,且在上為單調(diào)遞增函數(shù)

B.的最小正周期為,且在上為單調(diào)遞減函數(shù)

C.的最小正周期為,  且在上為單調(diào)遞增函數(shù)

D.的最小正周期為,  且在上為單調(diào)遞減函數(shù)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆浙江省紹興市高一上學(xué)期階段性考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在 上是增函數(shù).

(1)如果函數(shù)上是減函數(shù),在上是增函數(shù),求的值;

(2)證明:函數(shù)(常數(shù))在上是減函數(shù);

(3)設(shè)常數(shù),求函數(shù)的最小值和最大值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案