已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在 上是增函數(shù).

(1)如果函數(shù)上是減函數(shù),在上是增函數(shù),求的值;

(2)證明:函數(shù)(常數(shù))在上是減函數(shù);

(3)設(shè)常數(shù),求函數(shù)的最小值和最大值.

 

【答案】

解. (1) b=4.

 (2) 證明略

(3) 當(dāng)1<c≤3時(shí), 函數(shù)f(x)的最大值是f(3)=3+;

當(dāng)3<c<9時(shí), 函數(shù)f(x)的最大值是f(1)=1+c.

 

【解析】本題考查函數(shù)的性質(zhì)和應(yīng)用,解題要認(rèn)真審題,仔細(xì)求解

(1)根據(jù)題設(shè)條件知 =4,由此可知b=4.

(2)根據(jù)已知函數(shù)定義法,設(shè)出變量作差,變形定號(hào),確定結(jié)論。

(3)根據(jù)∵c∈(1,9)然后得到函數(shù)的單調(diào)區(qū)間進(jìn)而得到最值

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題16分)已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù)。

(1)如果函數(shù)上是減函數(shù),在上是增函數(shù),求的值。

(2)設(shè)常數(shù),求函數(shù)的最大值和最小值;

(3)當(dāng)是正整數(shù)時(shí),研究函數(shù)的單調(diào)性,并說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題16分)已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù)。

(1)如果函數(shù)上是減函數(shù),在上是增函數(shù),求的值。

(2)設(shè)常數(shù),求函數(shù)的最大值和最小值;

(3)當(dāng)是正整數(shù)時(shí),研究函數(shù)的單調(diào)性,并說(shuō)明理由  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在(0,)上減函數(shù),在是增函數(shù)。

(1)如果函數(shù)的值域?yàn)?img width=49 height=21 src="http://thumb.1010pic.com/pic1/1899/sx/13/118213.gif">,求的值;

(2)研究函數(shù)(常數(shù))在定義域的單調(diào)性,并說(shuō)明理由;

(3)對(duì)函數(shù)(常數(shù))作出推廣,使它們都是你所推廣的函數(shù)的特例。研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)

(n是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你的研究結(jié)論)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:慶安三中2010——2011學(xué)年度高二下學(xué)期期末考試數(shù)學(xué)(文) 題型:解答題

(12分)已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù)。
(1)如果函數(shù)上是減函數(shù),在上是增函數(shù),求的值。
(2)設(shè)常數(shù),求函數(shù)的最大值和最小值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年浙江省高一上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題

(本題12分)已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù);

(1)如果函數(shù)上是減函數(shù),在上是增函數(shù),求的值;

(2)當(dāng)時(shí),試用函數(shù)單調(diào)性的定義證明函數(shù)f(x)在上是減函數(shù)。

(3)設(shè)常數(shù),求函數(shù)的最大值和最小值;

 

查看答案和解析>>

同步練習(xí)冊(cè)答案