【題目】圖是某市月日至日的空氣質(zhì)量指數(shù)趨勢(shì)圖,空氣質(zhì)量指數(shù)()小于表示空氣質(zhì)量?jī)?yōu)良,空氣質(zhì)量指數(shù)大于表示空氣重度污染,某人隨機(jī)選擇月日至月日中的某一天到達(dá)該市,并停留天.
(1)求此人到達(dá)當(dāng)日空氣質(zhì)量?jī)?yōu)良的概率;
(2)求此人停留期間至多有1天空氣重度污染的概率.
【答案】(1);(2).
【解析】
試題(1)從圖中找出天內(nèi)空氣質(zhì)量?jī)?yōu)良的天數(shù),從而確定此人到達(dá)當(dāng)日空氣質(zhì)量?jī)?yōu)良的概率;(2)將問(wèn)題分為兩種:一種是沒(méi)有空氣質(zhì)量重度污染,另一種是只有一天空氣質(zhì)量重度污染,并從圖中找出相應(yīng)的天數(shù),從而確定題中涉及事件的概率.
試題解析:(1)在月日至月日這天中,只有日、日共天的空氣質(zhì)量?jī)?yōu)良,所以此人到達(dá)當(dāng)日空氣質(zhì)量?jī)?yōu)良的概率;
(2)根據(jù)題意,事件“此人在該市停留期間至多有天空氣重度污染”,即“此人到達(dá)該市停留期間天空氣重度污染或僅有天空氣重度污染”.
“此人在該市停留期間天空氣重度污染”等價(jià)于“此人到達(dá)該市的日期是日或日或日”.其概率為,
“此人在該市停留期間僅有天空氣重度污染”等價(jià)于“此人到達(dá)該市的日期是日或日或日或日或日”.其概率為,
所以此人停留期間至多有天空氣重度污染的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,(其中為自然對(duì)數(shù)的底數(shù),…).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍;
(3)若,當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定兩個(gè)七棱錐,它們有公共面的底面,頂點(diǎn)、在底面的兩則.現(xiàn)將下述線段中的每一條染紅、藍(lán)兩色之一:,底面上的所有對(duì)角線和所有的側(cè)棱.求證:圖中心存在一個(gè)同色三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從2名男生和2名女生中任意選擇兩人在星期六、星期日參加某公益活動(dòng),每天一人,則星期六安排一名男生、星期日安排一名女生的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從數(shù)字1,2,3,4,5中,隨機(jī)抽取3個(gè)數(shù)字(允許重復(fù))組成一個(gè)三位數(shù),其各位數(shù)字之和等于9的概率為 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知Sn為數(shù)列{an}的前n項(xiàng)和,且Sn+2=2an,n∈N*.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn,設(shè)數(shù)列{bn}的前項(xiàng)和為Tn,若Tn,求n的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】去年,相關(guān)部門對(duì)某城市“五朵金花”之一的某景區(qū)在“十一”黃金周中每天的游客人數(shù)作了統(tǒng)計(jì),其頻率分布如下表所示:
時(shí)間 | 10月1日 | 10月2日 | 10月3日 | 10月4日 | 10月5日 | 10月6日 | 10月7日 |
頻率 | 0.05 | 0.08 | 0.09 | 0.13 | 0.30 | 0.15 | 0.20 |
已知10月1日這天該景區(qū)的營(yíng)業(yè)額約為8萬(wàn)元,假定這七天每天游客人均消費(fèi)相同,則這個(gè)黃金周該景區(qū)游客人數(shù)最多的那一天的營(yíng)業(yè)額約為______萬(wàn)元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的展開(kāi)式中的第二項(xiàng)和第三項(xiàng)的系數(shù)相等.
(1)求的值;
(2)求展開(kāi)式中所有二項(xiàng)式系數(shù)的和;
(3)求展開(kāi)式中所有的有理項(xiàng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com