從2開始的200個偶數(shù),即2、4、6、8…400中,用系統(tǒng)抽樣的辦法抽取20個偶數(shù)作樣本.
考點:系統(tǒng)抽樣方法
專題:概率與統(tǒng)計
分析:S1:編號;S2:分段;S3:定首號;S4:取余號.
解答: 解:S1:編號,把2、4、6、8…400這200個偶從002到400按偶數(shù)次序編號;
S2:分段,計算分間隔為k=
200
20
=10,把編號從小到大依次分成20段,每段10個號;
S3:定首號,在第一段002~020的10個號中,
用簡單隨機抽樣的方法,抽取一個號碼,假設(shè)抽中的是008;
S4:取余號,依次抽取008,028,048,068,088,108,128,148,168,
188,208,228,248,268,288,308,328,348,368,388.
點評:本題考查系統(tǒng)抽樣方法抽取樣本的方法,是基礎(chǔ)題,解題時要認真審題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖是一算法的程序框圖,若輸出結(jié)果為S=720,則在判斷框中應(yīng)填入的條件是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè){an}是等比數(shù)列,首項為a,公比為q,前n項和為Sn,記Tn=a12+a22+…+an2
(1)若a1=1,S3=3,求數(shù)列{an}的通項公式;
(2)若Sn=-
1
2
an+3,求證:S2n=
2
3
Tn
(3)計算:
lim
n→∞
Sn
Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
a
2
x2
(1)當a=2時,求曲線y=f(x)在點P(3,f(3))處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=
-2x-x2+3
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1是橢圓C1
y2
a2
+
x2
b2
=1(a>b>0)與拋物線C2:x2=4y共同的焦點,M是C1與C2在第二象限的交點,且|MF1|=
5
3

(1)試求橢圓C1的方程;
(2)已知點P是橢圓C1上的動點,GH是圓x2+(y+1)2=1的直徑,試求
PG
PH
的最大值;
(3)與圓x2+(y+1)2=1相切的直線l:y=k(x+t)(t≠0)交橢圓于A、B兩點,若橢圓上的點P滿足
OA
+
OB
OP
,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為梯形,AB∥DC,DC=4,∠DAB=60°,側(cè)面△PAD和△PAB均為邊長為2的正三角形,M為線段PC的中點.
(Ⅰ)求證:PD⊥AB;
(Ⅱ)求二面角P-BC-D的平面角的正切值;
(Ⅲ)試問:在線段AB上是否存在點N,使得MN與平面PDB的交點恰好是△PDB的重心?若存在,求出AN的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

方程x2+2(m-2)x+m2+4=0,有兩個根x1、x2,且x12+x22-x1x2=21,求m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知模長為1,2,3的三個向量
a
,
b
c
,且
a
b
=
b
c
=
c
a
=0,則|
a
+
b
+
c
|的值為
 

查看答案和解析>>

同步練習冊答案