【題目】現(xiàn)有(n≥2,n∈N*)個(gè)給定的不同的數(shù)隨機(jī)排成一個(gè)下圖所示的三角形數(shù)陣:
設(shè)Mk是第k行中的最大數(shù),其中1≤k≤n,k∈N*.記M1<M2<…<Mn的概率為pn.
(1)求p2的值;
(2)證明:pn>.
【答案】(1).(2)見(jiàn)解析.
【解析】試題分析:(1)由題意得,即可求解的值;
(2)根據(jù)排列組合的知識(shí)得到,在利用展開(kāi)式,即可作出證明。
試題解析:
(1)由題意知p2==, 即p2的值為.
(2)先排第n行,則最大數(shù)在第n行的概率為=;
去掉第n行已經(jīng)排好的n個(gè)數(shù),
則余下的-n=個(gè)數(shù)中最大數(shù)在第n-1行的概率為=;
故pn=××…×==.
由于2n=(1+1)n=C+C+C+…+C≥C+C+C>C+C=C,
故>,即pn>.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校高一 、高二 、高三三個(gè)年級(jí)共有 名教師,為調(diào)查他們的備課時(shí)間情況,通過(guò)分層
抽樣獲得了名教師一周的備課時(shí)間 ,數(shù)據(jù)如下表(單位 :小時(shí)):
高一年級(jí) | ||||||||
高二年級(jí) | ||||||||
高三年級(jí) |
(1)試估計(jì)該校高三年級(jí)的教師人數(shù) ;
(2)從高一年級(jí)和高二年級(jí)抽出的教師中,各隨機(jī)選取一人,高一年級(jí)選出的人記為甲 ,高二年級(jí)選出的人記為乙 ,求該周甲的備課時(shí)間不比乙的備課時(shí)間長(zhǎng)的概率 ;
(3)再?gòu)母咭弧⒏叨、高三三個(gè)年級(jí)中各隨機(jī)抽取一名教師,他們?cè)撝艿膫湔n時(shí)間分別是(單位: 小時(shí)),這三個(gè)數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為,表格中的數(shù)據(jù)平均數(shù)記為 ,試判斷與的大小. (結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),若存在常數(shù),使得對(duì)任意,均有,則稱(chēng)為有界集合,同時(shí)稱(chēng)為集合的上界.
(1)設(shè)、,試判斷、是否為有界集合,并說(shuō)明理由;
(2)已知,記().若,
,且為有界集合,求的值及的取值范圍;
(3)設(shè)均為正數(shù),將中的最小數(shù)記為.是否存在正數(shù),使得為有界集合, 均為正數(shù)的上界,若存在,試求的最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f(x),若在定義域內(nèi)存在x0 , 使得f(﹣x0)=﹣f(x0)成立,則稱(chēng)x0為函數(shù)y=f(x)的局部對(duì)稱(chēng)點(diǎn).
(1)若a、b∈R且a≠0,證明:函數(shù)f(x)=ax2+bx﹣a必有局部對(duì)稱(chēng)點(diǎn);
(2)若函數(shù)f(x)=2x+c在定義域[﹣1,2]內(nèi)有局部對(duì)稱(chēng)點(diǎn),求實(shí)數(shù)c的取值范圍;
(3)若函數(shù)f(x)=4x﹣m2x+1+m2﹣3在R上有局部對(duì)稱(chēng)點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直四棱柱ABCD-A1B1C1D1中,底面四邊形ABCD為菱形,A1A=AB=2,∠ABC=,E,F分別是BC,A1C的中點(diǎn).
(1)求異面直線(xiàn)EF,AD所成角的余弦值;
(2)點(diǎn)M在線(xiàn)段A1D上, .若CM∥平面AEF,求實(shí)數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+mx﹣4在區(qū)間[﹣2,1]上的兩個(gè)端點(diǎn)處取得最大值和最小值.
(1)求實(shí)數(shù)m的所有取值組成的集合A;
(2)試寫(xiě)出f(x)在區(qū)間[﹣2,1]上的最大值g(m);
(3)設(shè)h(x)=﹣ x+7,令F(m)= ,其中B=RA,若關(guān)于m的方程F(m)=a恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿(mǎn)足Sn+an=2n+1.
(1)寫(xiě)出a1 , a2 , a3 , 并推測(cè)an的表達(dá)式;
(2)用數(shù)學(xué)歸納法證明所得的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】執(zhí)行如圖所示程序框圖,若輸入a,b,i的值分別為6,4,1,則輸出a和i的值分別為( )
A.2,4
B.3,4
C.2,5
D.2,6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com