一個多面體的直觀圖、正視圖、側(cè)視圖、俯視圖如圖所示,M、N分別為A1B、B1C1的中點(diǎn).
(1)求證:MN//平面ACC1A1;
(2)求證:MN^平面A1BC.
(1)見解析;(2)見解析
解析試題分析:先由三視圖還原幾何體的直觀圖中線段長度,(1)利用直線與平面平行的判定定理,在平面內(nèi)找一直線AC1,由三角形中位線證明MN//AC1,用直線與平面平行的判定定理得到結(jié)論;(2)通過證明平面內(nèi)兩相交直線同時垂直MN,由直線與平面垂直的判定定理得證.
試題解析:證明:由意可得:這個幾何體是直三棱柱,
且AC^BC,AC=BC=CC1 2分
(1)由直三棱柱的性質(zhì)可得:AA1^A1B1
四邊形ABCD為矩形,則M為AB1的中點(diǎn),N為B1C1
的中點(diǎn),在DAB1C中,由中位線性質(zhì)可得:
MN//AC1,又AC1Ì平面ACC1A1,MNË平面ACC1A1
\ MN//平面ACC1A1 6分
(2)因?yàn)椋篊C1^平面ABC,BCÌ平面ABC,\ CC1^ BC,
又BC^AC,ACÇCC1=C,所以,BC^平面ACC1A1,AC1Ì平面ACC1A1
\ BC^AC1,在正方形ACC1A1中,AC1^A1C,BCÇA1C=C,\ AC1^平面A1BC,
又AC1//MN,\MN^平面A1BC 10分
考點(diǎn):1.三視圖;2.直線與平面的平行、垂直的判定
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,正三棱柱ABC—A1B1C1的各棱長都相等,M、E分別是和AB1的中點(diǎn),點(diǎn)F在BC上且滿足BF∶FC=1∶3.
(1)求證:BB1∥平面EFM;
(2)求四面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
直三棱柱ABC-A1B1C1中,AB=AA1,∠CAB=.
(1)證明:CB1⊥BA1;
(2)已知AB=2,BC=,求三棱錐C1-ABA1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,是矩形中邊上的點(diǎn),為邊的中點(diǎn),,現(xiàn)將沿邊折至位置,且平面平面.
⑴求證:平面平面;
⑵求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示的幾何體ABCDFE中,△ABC,△DFE都是等邊三角形,且所在平面平行,四邊形BCED為正方形,且所在平面垂直于平面ABC.
(Ⅰ)證明:平面ADE∥平面BCF;
(Ⅱ)求二面角D-AE-F的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com