設(shè)a為大于1的常數(shù),函數(shù)f(x)=
logax,x>0
ax,x≤0
,若關(guān)于x的方程f2(x)-bf(x)=0恰有三個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)b的取值范圍是
 
考點(diǎn):根的存在性及根的個(gè)數(shù)判斷
專(zhuān)題:計(jì)算題,作圖題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意化簡(jiǎn)f2(x)-bf(x)=0為f(x)=0或f(x)=b;作函數(shù)f(x)=
logax,x>0
ax,x≤0
的圖象,利用數(shù)形結(jié)合求解.
解答: 解:f2(x)-bf(x)=0可化為
f(x)=0或f(x)=b;
作函數(shù)f(x)=
logax,x>0
ax,x≤0
的圖象如下,

當(dāng)f(x)=0可得x=1,
故f(x)=b要有兩個(gè)不同于1的實(shí)數(shù)解,
故由圖象可得,
0<b≤1;
故答案為:0<b≤1.
點(diǎn)評(píng):本題考查了方程的根與函數(shù)的圖象的關(guān)系,同時(shí)考查了學(xué)生的作圖能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中,真命題是( 。
A、x若,y∈R 且x+y>2  則x,y至少有一個(gè)大于1
B、?x∈R,2x>x2
C、a+b=0的充要條件是
a
b
=-1
D、?x0∈R,e x0≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)一個(gè)球的表面積為S1,它的內(nèi)接正方體的表面積為S2,則
S1
S2
的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求φ使函數(shù)y=
3
cos(3x-φ)-sin(3x-φ)是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在學(xué)習(xí)數(shù)學(xué)的過(guò)程中,我們通常運(yùn)用類(lèi)比猜想的方法研究問(wèn)題.
(1)已知?jiǎng)狱c(diǎn)P為圓O:x2+y2=r2外一點(diǎn),過(guò)P引圓O的兩條切線PA、PB,A、B為切點(diǎn),若
PA
PB
=0,求動(dòng)點(diǎn)P的軌跡方程;
(2)若動(dòng)點(diǎn)Q為橢圓M:
x2
9
+
y2
4
=1外一點(diǎn),過(guò)Q引橢圓M的兩條切線QC、QD,C、D為切點(diǎn),若
QC
QD
=0,求出動(dòng)點(diǎn)Q的軌跡方程;
(3)在(2)問(wèn)中若橢圓方程為
x2
a2
+
y2
b2
=1(a>b>0),其余條件都不變,那么動(dòng)點(diǎn)Q的軌跡方程是什么(直接寫(xiě)出答案即可,無(wú)需過(guò)程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正方體的棱長(zhǎng)為1,F(xiàn),E分別為AC和BC′的中點(diǎn),則線段EF的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某小區(qū)要建一座八邊形的休閑公園,它的主體造型的平面圖是由兩個(gè)相同的舉行ABCD和EFGH構(gòu)成的面積為200m2的十字型地域,計(jì)劃在正方形MNPQ上建一座花壇,造價(jià)為4200元/m2,在四個(gè)相同的矩形上(途中陰影部分)鋪花崗巖地坪,造價(jià)為210元/m2,再在四個(gè)角上鋪草坪,造價(jià)為80元/m2.受地域影響,AD的長(zhǎng)最多能達(dá)到2
3
m,其余的邊長(zhǎng)沒(méi)有限制.
(1)設(shè)總造價(jià)為S元,AD的長(zhǎng)為xm,試建立S關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)x取何值時(shí),S最小,并求出這個(gè)最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右頂點(diǎn)為A,點(diǎn)B,C都在雙曲線的右支上,若△ABC為等邊三角形,求雙曲線的離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cos4α-sin4α=
2
3
α∈(0,
π
2
)
,則cos(2α+
3
)
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案