分析 (Ⅰ)設出f(x),g(x)的解析式,利用待定系數法求解.
(Ⅱ)根據y=g(x)與x軸及y=f(x)都相切,g(0)=$\frac{1}{16}$,建立關系,利用判別式求解.
解答 解:由題意,設f(x)=kx+m,g(x)=ax2+bx+c(a≠0)
∵f[g(x)]=g[f(x)].
∴k(ax2+bx+c)+m=a(kx+m)2+b(kx+m)+c,
解得:k=1,m=0
∴f(x)的解析式為f(x)=x
(Ⅱ)∵g(0)=$\frac{1}{16}$,
∴c=$\frac{1}{16}$
得g(x)=ax2+bx+$\frac{1}{16}$
又∵y=g(x)與x軸,相切,
可得:4ac=b2,即$\frac{1}{4}a=^{2}$…①
又∵y=g(x)與f(x)=x相切,
可得:ax2+bx+$\frac{1}{16}$=x,即方程ax2+x(b-1)+$\frac{1}{16}$=0只有一個解.
∴$(b-1)^{2}=\frac{1}{4}a$…②
由①②解得:b=$\frac{1}{2}$,a=1
故得g(x)的解析式為g(x)=x2+$\frac{1}{2}$x+$\frac{1}{16}$.
點評 本題考查了函數解析式的求法,利用了待定系數法,屬于基礎題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{5}{2}$ | B. | $\frac{8}{5}$ | C. | $\frac{5}{2}$或$\frac{8}{5}$ | D. | $\frac{5}{2}$或$\frac{4}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | p∨q為真 | B. | p∧q為真 | C. | p∨q為假 | D. | q為真 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | b>a>c | B. | a>b>c | C. | c>b>a | D. | 無法確定 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com