【題目】如圖,設長方體中,,的中點,點在線段.

1)試在線段上確定點的位置,使得異面直線所成角為,并請說明你的理由;

2)在滿足(1)的條件下,求四棱錐的體積.

【答案】1P是線段的中點,理由見解析;(2.

【解析】

1)以為坐標原點,分別以、所在直線為、、軸建立空間直角坐標系,設,把的坐標用表示,然后分別求出的坐標,再由列式求得值得答案;

2)由圖可得四棱錐的高為,再求出底面直角梯形的面積,代入棱錐體積公式求得四棱錐的體積.

解:(1是線段中點.

證明如下:

為坐標原點,分別以、所在直線為、、軸建立空間直角坐標系,

0,,,0,,1,,0,,1,,

,則,,

,,,又,1,

,解得:;

2)連接,則平面,

平面四棱錐的高為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)一批零件,為了解這批零件的質(zhì)量狀況,檢驗員從這批產(chǎn)品中隨機抽取了100件作為樣本進行檢測,將它們的重量(單位:g)作為質(zhì)量指標值.由檢測結(jié)果得到如下頻率分布直方圖.

分組

頻數(shù)

頻率

8

16

0.16

4

0.04

合計

100

1

1)求圖中的值;

2)根據(jù)質(zhì)量標準規(guī)定:零件重量小于47或大于53為不合格品,重量在區(qū)間內(nèi)為合格品,重量在區(qū)間內(nèi)為優(yōu)質(zhì)品.已知每件產(chǎn)品的檢測費用為5元,每件不合格品的回收處理費用為20元.以抽檢樣本重量的頻率分布作為該零件重量的概率分布.若這批零件共,現(xiàn)有兩種銷售方案:方案一:不再檢測其他零件,整批零件除對已檢測到的不合格品進行回收處理,其余零件均按150/件售出;方案二:繼續(xù)對剩余零件的重量進行逐一檢測,回收處理所有不合格品,合格品按150/件售出,優(yōu)質(zhì)品按200/件售出.僅從獲得利潤大的角度考慮,該生產(chǎn)商應選擇哪種方案?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知是橢圓的左焦點,且橢圓經(jīng)過點.

)求橢圓的方程;

)若過點的直線交橢圓、兩點,線段的中點為,過且與垂直的直線與軸和軸分別交于、兩點,記的面積分別為、.若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司即將推車一款新型智能手機,為了更好地對產(chǎn)品進行宣傳,需預估市民購買該款手機是否與年齡有關,現(xiàn)隨機抽取了50名市民進行購買意愿的問卷調(diào)查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強,調(diào)查結(jié)果用莖葉圖表示如圖所示.

(1)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷是否有95%的把握認為市民是否購買該款手機與年齡有關?

(2)從購買意愿弱的市民中按年齡進行分層抽樣,共抽取5人,從這5人中隨機抽取2人進行采訪,求這2人都是年齡大于40歲的概率.

附: .

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設橢圓的左、右焦點分別為F1,F(xiàn)2,上頂點為A,過點A與AF2垂直的直線交x軸負半軸于點Q,且0,若過 A,Q,F(xiàn)2三點的圓恰好與直線相切,過定點 M(0,2)的直線與橢圓C交于G,H兩點(點G在點M,H之間).(Ⅰ)求橢圓C的方程;(Ⅱ)設直線的斜率,在x軸上是否存在點P(,0),使得以PG,PH為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍;如果不存在,請說明理由;(Ⅲ)若實數(shù)滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,平面,平面,四邊形是邊長為的菱形,,.

1)證明:平面;

2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題:“雙曲線任意一點到直線的距離分別記作,則為定值”為真命題.

1)求出的值.

2)已知直線 關于y軸對稱且使得上的任意點到的距離滿足為定值,求的方程.

3)已知直線是與(2)中某一條直線平行(或重合)且與橢圓交于兩點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,且曲線恰有一個公共點.

(Ⅰ)求曲線的極坐標方程;

(Ⅱ)已知曲線上兩點,滿足,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習慣,粽子又稱粽籺,俗稱粽子,古稱角黍,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀念戰(zhàn)國時期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球體積的最大值為____

查看答案和解析>>

同步練習冊答案