函數(shù)y=f(x)的定義域?yàn)閇-1,0]∪(0,1],其圖像上任一點(diǎn)P(x,y)滿足x2+y2=1
①函數(shù)y=f(x)一定是偶函數(shù);
②函數(shù)y=f(x)可能既不是偶函數(shù),也不是奇函數(shù);
③函數(shù)y=f(x)可以是奇函數(shù);
④函數(shù)y=f(x)如果是偶函數(shù),則值域是[0,1)或(-1,0]
其中正確命題的序號是
A.①③
B.②③
C.③④
D.②③④
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2002年全國各省市高考模擬試題匯編 題型:044
已知:如圖射線OA為y=kx(k>0,x>0),射線OB為y=-kx(x>0),動(dòng)點(diǎn)P(x,y)在∠AOx的內(nèi)部,PM⊥OA于M,PN⊥OB于N,四邊形ONPM的面積恰為k.
(Ⅰ)當(dāng)k為定值時(shí),動(dòng)點(diǎn)P的縱坐標(biāo)y是其橫坐標(biāo)x的函數(shù),求這個(gè)函數(shù)y=f(x)的解析式;
(Ⅱ)根據(jù)k的取值范圍,確定y=f(x)的定義域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江西省白鷺洲中學(xué)2009-2010學(xué)年高一下學(xué)期第一次月考數(shù)學(xué)試題 題型:044
某服裝批發(fā)商場經(jīng)營的某種服裝,進(jìn)貨成本40元/件,對外批發(fā)價(jià)定為60元/件.該商場為了鼓勵(lì)購買者大批量購買,推出優(yōu)惠政策:一次購買不超過50件時(shí),只享受批發(fā)價(jià);一次購買超過50件時(shí),每多購買1件,購買者所購買的所有服裝可在享受批發(fā)價(jià)的基礎(chǔ)上,再降低0.1元/件,但最低價(jià)不低于50元/件.
(1)問一次購買多少件時(shí),售價(jià)恰好是50元/件?
(2)設(shè)購買者一次購買x件,商場的利潤為y元(利潤=銷售總額-成本),試寫出函數(shù)y=f(x)的表達(dá)式.并說明在售價(jià)高于50元/件時(shí),購買者一次購買多少件,商場利潤最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2008年普通高等學(xué)校招生全國統(tǒng)一考試(寧夏、海南卷)、數(shù)學(xué)(理科)解析 題型:044
設(shè)函數(shù),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=3.
(Ⅰ)求y=f(x)的解析式:
(Ⅱ)證明:函數(shù)y=f(x)的圖像是一個(gè)中心對稱圖形,并求其對稱中心;
(Ⅲ)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:山東省濟(jì)寧市某中學(xué)2012屆高三9月月考數(shù)學(xué)試題 題型:044
為了迎接世博會(huì),某旅游區(qū)提倡低碳生活,在景區(qū)提供自行車出租.該景區(qū)有50輛自行車供游客租賃使用,管理這些自行車的費(fèi)用是每日115元.根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超出6元,則每超過1元,租不出的自行車就增加3輛.為了便于結(jié)算,每輛自行車的日租金x(元)只取整數(shù),并且要求出租自行車一日的總收入必須高于這一日的管理費(fèi)用,用y(元)表示出租自行車的日凈收入(即一日中出租自行車的總收入減去管理費(fèi)用后的所得).
(1)求函數(shù)y=f(x)的解析式及其定義域;
(2)試問當(dāng)每輛自行車的日租金定為多少元時(shí),才能使一日的凈收入最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2008年普通高等學(xué)校招生全國統(tǒng)一考試寧夏卷數(shù)學(xué)理科 題型:044
設(shè)函數(shù)f(x)=ax+(a,b∈Z),曲線y=f(x)在點(diǎn)(0,f(2))處的切線方程為y=3.
(Ⅰ)求f(x)的解析式:
(Ⅱ)證明:函數(shù)y=f(x)的圖像是一個(gè)中心對稱圖形,并求其對稱中心;
(Ⅲ)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com