分析 (1)過點(diǎn)P作PD⊥AC,垂足為D,連結(jié)PA.運(yùn)用直角三角形中銳角三角函數(shù)的定義,求得PD,ND,PA;
(2)運(yùn)用同角的平方關(guān)系和二倍角公式及兩角和差函數(shù)公式,化簡(jiǎn)函數(shù)式,再由正弦函數(shù)的圖形和性質(zhì),可得最大值.
解答 解:(1)過點(diǎn)P作PD⊥AC,垂足為D,連結(jié)PA.
在Rt△MAN中,sinθ=$\frac{NA}{MN}$=$\frac{NA}{2}$,故NA=2sinθ,
在Rt△PND中,∠PND=θ,sinθ=$\frac{PD}{PN}$=$\frac{PD}{1}$,cosθ=$\frac{ND}{PN}$=$\frac{ND}{1}$,
故PD=sinθ,ND=cosθ.
在Rt△PDA中,PA=$\sqrt{P{D}^{2}+A{D}^{2}}$=$\sqrt{P{D}^{2}+(AN+ND)^{2}}$
=$\sqrt{si{n}^{2}θ+(2sinθ+cosθ)^{2}}$,
所以l(θ)=$\sqrt{si{n}^{2}θ+(2sinθ+cosθ)^{2}}$,
函數(shù)l(θ)的定義域?yàn)椋?,$\frac{π}{2}$).
(2)由(1)可知,l(θ)=$\sqrt{si{n}^{2}θ+(2sinθ+cosθ)^{2}}$,
即l(θ)=$\sqrt{si{n}^{2}θ+4si{n}^{2}θ+4sinθcosθ+co{s}^{2}θ}$=$\sqrt{4si{n}^{2}θ+4sinθcosθ+1}$
=$\sqrt{2(1-cos2θ)+2sin2θ+1}$=$\sqrt{2sin2θ-2cos2θ+3}$=$\sqrt{2\sqrt{2}sin(2θ-\frac{π}{4})+3}$,
又θ∈(0,$\frac{π}{2}$),故2θ-$\frac{π}{4}$∈(-$\frac{π}{4}$,$\frac{3π}{4}$),所以當(dāng)2θ-$\frac{π}{4}$=$\frac{π}{2}$,
即θ=$\frac{3π}{8}$時(shí),sin(2θ-$\frac{π}{4}$)取最大值1,
l(θ)max=$\sqrt{3+2\sqrt{2}}$=1+$\sqrt{2}$.
答:當(dāng)θ=$\frac{3π}{8}$時(shí),l(θ)有最大值,最大值為1+$\sqrt{2}$.
點(diǎn)評(píng) 本題考查函數(shù)在實(shí)際問題中的應(yīng)用,注意運(yùn)用三角函數(shù)的恒等變換公式,考查正弦函數(shù)的圖形和性質(zhì),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | -$\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | $\frac{8}{3}$ | C. | $\frac{4\sqrt{3}}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{1}{2}$ | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com