【題目】如圖,在四棱錐P﹣ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,PC=2,E是PB上的點(diǎn).
(1)求證:平面EAC⊥平面PBC;
(2)若E是PB的中點(diǎn),求二面角P﹣AC﹣E的余弦值.
【答案】
(1)證明:∵PC⊥平面ABCD,AC平面ABCD,∴AC⊥PC,AB=2,AD=CD=1,
∴ ,∴AC2+BC2=AB2,∴AC⊥BC,
又BC∩PC=C,∴AC⊥平面PBC,∵AC平面EAC,
∴平面EAC⊥平面PBC.
(2)解:以C為原點(diǎn),建立空間直角坐標(biāo)系,如圖所示,
則C(0,0,0),A(1,1,0),B(1,﹣1,0),設(shè)P(0,0,2),
則 ,取 ,則 ,
∴ 為面PAC的法向量.
設(shè) 為面EAC的法向量,則 ,
即 ,取x=2,y=﹣2,z=﹣2,
則 .
【解析】(1)證明AC⊥PC,AC⊥BC,得到AC⊥平面PBC,然后證明平面EAC⊥平面PBC.(2)以C為原點(diǎn),建立空間直角坐標(biāo)系,求出面PAC的法向量.面EAC的法向量,然后求解二面角的余弦函數(shù)值.
【考點(diǎn)精析】本題主要考查了平面與平面垂直的判定的相關(guān)知識(shí)點(diǎn),需要掌握一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)(a,b為常數(shù))滿足條件,且方程有兩個(gè)相等的實(shí)數(shù)根.
(1)求的解析式;
(2)是否存在實(shí)數(shù)(m<n),使得的定義域和值域分別為,如果存在,求出。不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)市場(chǎng)調(diào)查,某城市的一種小商品在過去的近20天內(nèi)的銷售量(件)與價(jià)格(元)均為時(shí)間t(天)的函數(shù),且銷售量近似滿足g(t)=80﹣2t(件),價(jià)格近似滿足于 (元).
(Ⅰ)試寫出該種商品的日銷售額y與時(shí)間t(0≤t≤20)的函數(shù)表達(dá)式;
(Ⅱ)求該種商品的日銷售額y的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方形的中心為直線x﹣y+1=0和2x+y+2=0的交點(diǎn),一條邊所在的直線方程是x+3y﹣5=0,求其他三邊所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動(dòng)點(diǎn)P滿足 + =2
(1)求動(dòng)點(diǎn)P的軌跡F1 , F2的方程;
(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為 ,求△OAB面 積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項(xiàng)均為整數(shù)的數(shù)列滿足,,前6項(xiàng)依次成等差數(shù)列, 從第5項(xiàng)起依次成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)求出所有的正整數(shù)m ,使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處有極值10.
(1)求實(shí)數(shù)的值;
(2)設(shè),討論函數(shù)在區(qū)間上的單調(diào)性.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com