已知點(diǎn)P(x,y)在直線x+2y=3上移動(dòng),當(dāng)2x+4y取得最小值時(shí),過點(diǎn)P(x,y)引圓+=的切線,則此切線段的長(zhǎng)度為( )
A.1
B.
C.
D.
【答案】分析:要求切線段的長(zhǎng)度,利用直角三角形中半徑已知,P與圓心的距離未知,所以根據(jù)基本不等式求出P點(diǎn)的坐標(biāo),然后根據(jù)兩點(diǎn)間的距離公式求出即可.
解答:解:利用基本不等式及x+2y=3得:2x+4y≥2=2=4,當(dāng)且僅當(dāng)2x=4y=2,即x=,y=,
所以P(,),根據(jù)兩點(diǎn)間的距離公式求出P到圓心的距離==.且圓的半徑的平方為,
然后根據(jù)勾股定理得到此切線段的長(zhǎng)度==
故選D.
點(diǎn)評(píng):考查學(xué)生會(huì)利用基本不等式求函數(shù)的最值,會(huì)利用兩點(diǎn)間的距離公式求線段長(zhǎng)度,會(huì)利用勾股定理求直角的三角形的邊長(zhǎng).此題是一道綜合題,要求學(xué)生掌握知識(shí)要全面.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(x,y)在經(jīng)過兩點(diǎn)A(3,0),B(1,1)的直線上,那么2x+4y的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•泉州模擬)已知點(diǎn)P(x,y)在直線x-y-1=0上運(yùn)動(dòng),則(x-2)2+(y-2)2的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)p(x,y)在橢圓
x24
+y2=1
上,則x2+2x-y2的最大值為
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(x,y)在經(jīng)過點(diǎn)A(1,0)和點(diǎn)B(0,2)的直線上,則4x+2y的最小值是
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鹽城二模)選修4-4:坐標(biāo)系與參數(shù)方程:
已知點(diǎn)P(x,y)在橢圓
x2
16
+
y2
12
=1
上,試求z=2x-
3
y
的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案