直線y=kx+3與圓(x-a)2+(y-3)2=4相交于M、N兩點,則a的取值范圍為
 
考點:直線與圓相交的性質(zhì)
專題:直線與圓
分析:由直線過定點(0,3)且不含y軸,要使直線y=kx+3與圓(x-a)2+(y-3)2=4相交于M、N兩點,則需(0,3)在圓(x-a)2+(y-3)2=4內(nèi)或在圓上,得到(0-a)2+(3-3)2≤4求解a的取值范圍.
解答: 解:∵直線y=kx+3恒過定點(0,3),
要使直線y=kx+3與圓(x-a)2+(y-3)2=4相交于M、N兩點,
則(0,3)在圓(x-a)2+(y-3)2=4內(nèi)或在圓上,
即(0-a)2+(3-3)2≤4,
解得:-2≤a≤2.
故答案為:[-2,2].
點評:本題考查了直線與圓相交的性質(zhì),考查了直線系方程,體現(xiàn)了數(shù)學轉(zhuǎn)化思想方法,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)x,y滿足y=-x+1,則x2+y2的最小值是
 
.(請用不等式解)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果有窮數(shù)列a1,a2,a3,…,am(m為正整數(shù))滿足a1=am,a2=am-1,…am=a1.即ai=am-i+1(i=1,2,…,m),我們稱其為“對稱數(shù)列”例如,數(shù)列1,2,5,2,1與數(shù)列8,4,2,2,4,8都是“對稱數(shù)列”.設(shè){bn}是項數(shù)為2m(m>1,m∈N*)的“對稱數(shù)列”,并使得1,2,22,23,…,2m-1依次為該數(shù)列中連續(xù)的前m項,則數(shù)列{bn}的前2010項和S2010可以是:
(1)22010-1;(2)21006-2;(3)2m+1-22m-2010-1;
其中正確命題的個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

中心在原點,對稱軸為坐標軸的雙曲線經(jīng)過P( 3,-4
2
 )、Q( 
9
4
,5 )兩點.
(1)求雙曲線的方程;
(2)設(shè)F1、F2是雙曲線的兩個焦點,M是雙曲線上位于第一象限的一點,且滿足∠F1MF2=60°,求點M的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點M到點F(4,0)的距離比它到直線l:x+6=0的距離小2.
(1)求點M的軌跡方程;
(2)若直線y=x-5與(1)中的軌跡交于A、B兩點,求線段AB的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

判斷下列函數(shù)的奇偶性,并求出最小正周期
(1)f(x)=cos(πx-
π
2

(2)f(x)=sin(
2
3
x+
3
2
π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓方程為C:
x2
25
+
y2
9
=1.
(1)求以中點為(4,1)的弦所在直線方程;
(2)求斜率為3的直線與橢圓相交所得的弦的中點的軌跡.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

隨著恩施經(jīng)濟的高速增長,恩施城區(qū)交通出現(xiàn)了較嚴重的擁堵現(xiàn)象,專家建議,提高清江河上過江大橋的車輛通行能力可以適當改善城市的交通狀況.以施州大橋為研究對象,已知大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù),當橋上的車流密度達到或超過200輛/千米時,造成堵塞,此時車流速度v=0;當車流密度不超過40輛/千米時,車流速度v=80千米/小時;研究表明:當40≤x≤200時,車流速度v是車流密度x的一次函數(shù).
(1)當x≥0時,求車流速度函數(shù)v(x)的表達式;通常為保護大橋,延長使用壽命,過橋車輛限定最高時速,試問這座大橋限速多少千米/小時?
(2)當車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)f(x)=v•v(x)達到最大值,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三點O(0,0),A(-2,1),B(2,1)及曲線C上任意一點M(x,y),滿足|
MA
+
MB
|=
OM
•(
OA
+
OB
)+2
,求曲線C的方程,并寫出其焦點坐標.

查看答案和解析>>

同步練習冊答案