【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,從流水線上隨機抽取100件產(chǎn)品,統(tǒng)計其質量指標值并繪制頻率分布直方圖(如圖):
規(guī)定產(chǎn)品的質量指標值在的為劣質品,在的為優(yōu)等品,在的為特優(yōu)品,銷售時劣質品每件虧損1元,優(yōu)等品每件盈利3元,特優(yōu)品每件盈利5元.以這100 件產(chǎn)品的質量指標值位于各區(qū)間的頻率代替產(chǎn)品的質量指標值位于該區(qū)間的概率.
(1)求每件產(chǎn)品的平均銷售利潤;
(2)該企業(yè)為了解年營銷費用(單位:萬元)對年銷售量(單位:萬件)的影響,對近5年年營銷費用和年銷售量數(shù)據(jù)做了初步處理,得到如圖的散點圖及一些統(tǒng)計量的值.
16.30 | 23.20 | 0.81 | 1.62 |
表中,,,.
根據(jù)散點圖判斷,可以作為年銷售量(萬件)關于年營銷費用(萬元)的回歸方程.
①求關于的回歸方程;
⑦用所求的回歸方程估計該企業(yè)應投人多少年營銷費,才能使得該企業(yè)的年收益的預報值達到最大?(收益=銷售利潤營銷費用,取)
附:對于一組數(shù)據(jù),,…,其回歸直線均斜率和截距的最小二乘估計分別為,.
【答案】(1)3;(2)①,②900萬元.
【解析】
(1)先設每件產(chǎn)品的銷售利潤為,判斷出的可能取值,根據(jù)頻率分布直方圖求出對應概率,進而得出分布列,求出期望;
(2)①先由得,,令,,,則,根據(jù)表中數(shù)據(jù)求出,,進而可得,從而可得,整理即可求出結果;
②設年收益為萬元,則,令,則,進而可求出結果.
(1)設每件產(chǎn)品的銷售利潤為,則的可能取值為-1,3,5由頻率分布直方圖可得產(chǎn)品為劣質品、優(yōu)等品、特優(yōu)品的概率分別為0.05,0.85,0.1.所以;;,…
所以的分布列為
-1 | 3 | 5 | |
0.05 | 0.85 | 0.1 |
所以(元).
即每件產(chǎn)品的平均銷售利潤為3元.
(2)①由得,.
令,,,則,
由表中數(shù)據(jù)可得,,
則.
所以,即.
因為,所以,故所求的回歸方程為.
②設年收益為萬元,則.
令,則,
所以當,即時,有最大值900.
即該企業(yè)應該投入900萬元營銷費,能使得該企業(yè)的年收益的預報值達到最大900萬元.
科目:高中數(shù)學 來源: 題型:
【題目】微信是騰訊公司推出的一種手機通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內銷售商品的人(被稱為微商).為了調查每天微信用戶使用微信的時間,某經(jīng)銷化妝品的微商在一廣場隨機采訪男性、女性用戶各名,將男性、女性使用微信的時間分成組:,,,,分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
(1)根據(jù)女性頻率分布直方圖,估計女性使用微信的平均時間;
(2)若每天玩微信超過小時的用戶列為“微信控”,否則稱其為“非微信控”,請你根據(jù)已知條件完成的列聯(lián)表,并判斷是否有的把握認為“微信控”與“性別”有關?
參考公式:,其中.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點與短軸的一個端點是等邊三角形的三個頂點,且長軸長為4
(1)求橢圓的方程;
(2)若是橢圓的左頂點,經(jīng)過左焦點的直線與橢圓交于、兩點,求與的面積之差的絕對值的最大值,并求取得最大值時直線的方程.為坐標原點)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的右焦點為,右頂點為.已知,其中為原點, 為橢圓的離心率.
(1)求橢圓的方程及離心率的值;
(2)設過點的直線與橢圓交于點(不在軸上),垂直于的直線與交于點,與軸交于點.若,且,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設常數(shù).在平面直角坐標系xOy中,已知點,直線l:,曲線Γ:(,).l與x軸交于點A、與Γ交于點B.P、Q分別是曲線Γ與線段AB上的動點.
(1)用t表示點B到點F的距離;
(2)設,,線段OQ的中點在直線FP上,求△AQP的面積;
(3)設,是否存在以FP、FQ為鄰邊的矩形FPEQ,使得點E在Γ上?若存在,求點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在直角坐標系中,曲線(為參數(shù)).以原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)求曲線的普通方程和直線的直角坐標方程;
(2)若曲線與直線交于兩點,點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓經(jīng)過點離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)經(jīng)過橢圓左焦點的直線(不經(jīng)過點且不與軸重合)與橢圓交于兩點,與直線:交于點,記直線的斜率分別為.則是否存在常數(shù),使得向量 共線?若存在求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,,底面ABCD是邊長為3的正方形,EFG分別是棱ABPBPC的中點,,.
(Ⅰ)求證:平面EFG∥平面PAD;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】等腰直角三角形中,,點在邊上,垂直交于,如圖①.將沿折起,使到達的位置,且使平面平面,連接,,如圖②.
(Ⅰ)若為的中點,,求證:;
(Ⅱ)若,當三棱錐的體積最大時,求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com