6.已知F1,F(xiàn)2是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的兩個焦點(diǎn),P為橢圓C上一點(diǎn),且∠F1PF2=$\frac{2π}{3}$,若△PF1F2的面積為$9\sqrt{3}$,則b=( 。
A.9B.3C.4D.8

分析 設(shè)|PF1|=m,|PF2|=n,利用定義可得m+n=2a,利用余弦定理可得:(2c)2=m2+n2-2mn$cos\frac{2π}{3}$=(m+n)2-mn,化簡可得:4b2=mn.又$\frac{1}{2}$mnsin$\frac{2π}{3}$=9$\sqrt{3}$,代入解出即可得出.

解答 解:設(shè)|PF1|=m,|PF2|=n,則m+n=2a,
(2c)2=m2+n2-2mn$cos\frac{2π}{3}$=(m+n)2-mn,
∴4b2=mn.
又$\frac{1}{2}$mnsin$\frac{2π}{3}$=9$\sqrt{3}$,∴$2^{2}×\frac{\sqrt{3}}{2}$=9$\sqrt{3}$,解得b=3.
故選:B.

點(diǎn)評 本題考查了橢圓的定義標(biāo)準(zhǔn)方程及其性質(zhì)、余弦定理、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.上海市松江區(qū)天馬山上的“護(hù)珠塔”因其傾斜度超過意大利的比薩斜塔而號稱“世界第一斜塔”.興趣小組同學(xué)實(shí)施如下方案來測量塔的傾斜度和塔高:如圖,記O點(diǎn)為塔基、P點(diǎn)為塔尖、點(diǎn)P在地面上的射影為點(diǎn)H.在塔身OP射影所在直線上選點(diǎn)A,使仰角k∠HAP=45°,過O點(diǎn)與OA成120°的地面上選B點(diǎn),使仰角∠HPB=45°(點(diǎn)A、B、O都在同一水平面上),此時測得∠OAB=27°,A與B之間距離為33.6米.試求:
(1)塔高(即線段PH的長,精確到0.1米);
(2)塔身的傾斜度(即PO與PH的夾角,精確到0.1°).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.集合P={x|x<2},集合Q={y|y<1},則P與Q的關(guān)系為( 。
A.P⊆QB.Q⊆PC.P=QD.以上都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.解關(guān)于x的不等式:${a^{{x^2}-8}}≥{a^{2x}}({a>0且a≠1})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.若f(x)=2x+3,則f(3)=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在平面幾何中,有“若△ABC的周長c,面積為S,則內(nèi)切圓半徑r=$\frac{2S}{c}$”,類比上述結(jié)論,在立體幾何中,有“若四面體ABCD的表面積為S,體積為V,則其內(nèi)切球的半徑r=( 。
A.$\frac{3V}{S}$B.$\frac{2V}{S}$C.$\frac{V}{2S}$D.$\frac{V}{3S}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在四棱錐P-ABCD中,ABCD是正方形,PD⊥平面ABCD,PD=AB=2,E,F(xiàn),G分別是PC,PD,BC的中點(diǎn).
(1)求證:平面PAB∥平面EFG;
(2)證明:平面EFG⊥平面PAD;
(3)在線段PB上確定一點(diǎn)Q,使PC⊥平面ADQ,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)$0<a<\frac{1}{3}$,r=aa,$s={log_{\frac{1}{3}}}a$,$t={a^{\frac{1}{3}}}$,則( 。
A.r>s>tB.r>t>sC.s>r>tD.s>t>r

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列1,a,b,16是等差數(shù)列,數(shù)列1,c,d,e,16是等比數(shù)列,則$\fracdnbtj3d{a+b}$=$\frac{4}{17}$.

查看答案和解析>>

同步練習(xí)冊答案