(本小題滿分12分)某企業(yè)2005年的利潤為500萬元,因設(shè)備老化等原因,若不進行技術(shù)改造,預(yù)計企業(yè)利潤將從2006年開始每年減少20萬元。為此企業(yè)在2006年一次性投入資金600萬元進行技術(shù)改造,預(yù)測在未扣除技術(shù)改造資金的情況下,第年利潤為萬元。

(1)若不進行技術(shù)改造,則從2006年起的前年的利潤共萬元;若進行技術(shù)改造后,則從2006年起的前年的純利潤(扣除技術(shù)改造600萬元資金)共萬元,分別求

(2)依據(jù)預(yù)測,從2006年起至少經(jīng)過多少年技術(shù)改造后的純利潤超過不改造的利潤?

 

【答案】

(1),

(2)至少經(jīng)過4年技術(shù)改造后的利潤超過不改造的利潤。

【解析】解:(1)設(shè)不進行技術(shù)改造,從2006年起,第年的利潤為,則是首項為480萬元公差萬元的等差數(shù)列…………………………2分

∴前年的利潤

………………………………………………5分

又技術(shù)改造后,第年的利潤為

∴前年的純利潤:

………………6分

………………………………8分

(2)由

       ……………………………………10分

  ………………………………………………11分

答:至少經(jīng)過4年技術(shù)改造后的利潤超過不改造的利潤………………12分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習(xí)冊答案