(本題滿分14分)如圖,在平行四邊形ABCD中,AB=2BC,∠ABC=120°。E為線段AB的中點(diǎn),將△ADE沿直線DE翻折成△A’DE,使平面A’DE⊥平面BCD,F(xiàn)為線段A’C的中點(diǎn)。
(Ⅰ)求證:BF∥平面A’DE;
(Ⅱ)設(shè)M為線段DE的中點(diǎn),求直線FM與平面A’DE所成角的余弦值。
解析:本題主要考查空間線線、線面、面面位置關(guān)系,線面角等基礎(chǔ)知識,同時考查空間想象能力和推理論證能力。
(Ⅰ)證明:取A′D的中點(diǎn)G,連結(jié)GF,CE,由條件易知
FG∥CD,FG=CD.
BE∥CD,BE=CD.
所以FG∥BE,FG=BE.
故四邊形BEGF為平行四邊形,
所以BF∥EG
因?yàn)?sub>
平面
,BF
平面
所以 BF//平面
(Ⅱ)解:在平行四邊形,ABCD中,設(shè)BC=a
則AB=CD=2a, AD=AE=EB=a,
連CE
因?yàn)?sub>
在△BCE中,可得CE=a,
在△ADE中,可得DE=a,
在△CDE中,因?yàn)?i>CD2=CE2+DE2,所以CE⊥DE,
在正三角形A′DE中,M為DE中點(diǎn),所以A′M⊥DE.
由平面A′DE⊥平面BCD,
可知A′M⊥平面BCD,A′M⊥CE.
取A′E的中點(diǎn)N,連線NM、NF,
所以NF⊥DE,NF⊥A′M.
因?yàn)?i>DE交A′M于M,
所以NF⊥平面A′DE,
則∠FMN為直線FM與平面A′DE新成角.
在Rt△FMN中,NF=a, MN=
a, FM=a,
則cos=
.
所以直線FM與平面A′DE所成角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)如圖2,為了綠化城市,擬在矩形區(qū)域ABCD內(nèi)建一個矩形草坪,另外△AEF內(nèi)部有一文物保護(hù)區(qū)域不能占用,經(jīng)過測量AB=100m,BC=80m,AE=30m,AF=20m,應(yīng)該如何設(shè)計(jì)才能使草坪面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)
如圖,已知直三棱柱ABC—A1B1C1,,E是棱CC1上動點(diǎn),F(xiàn)是AB中點(diǎn),
(1)求證:;
(2)當(dāng)E是棱CC1中點(diǎn)時,求證:CF//平面AEB1;
(3)在棱CC1上是否存在點(diǎn)E,使得二面角A—EB1—B的大小是45°,若存在,求CE的長,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟(jì)寧市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分14分)如圖,在四棱錐E-ABCD中,底面ABCD為正方形, AE⊥平面CDE,已知AE=3,DE=4.
(Ⅰ)若F為DE的中點(diǎn),求證:BE//平面ACF;
(Ⅱ)求直線BE與平面ABCD所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年福建省高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題
(本題滿分14分)如圖,正方形、
的邊長都是1,平面
平面
,點(diǎn)
在
上移動,點(diǎn)
在
上移動,若
(
)
(I)求的長;
(II)為何值時,
的長最小;
(III)當(dāng)的長最小時,求面
與面
所成銳二面角余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:杭州市2010年第二次高考科目教學(xué)質(zhì)量檢測 題型:解答題
(本題滿分14分)如圖,矩形BCC1B1所在平面垂直于三角形ABC所在平面,BB1=CC1=AC=2,,又E、F分別是C1A和C1B的中點(diǎn)。
(1)求證:EF//平面ABC;
(2)求證:平面平面C1CBB1;
(3)求異面直線AB與EB1所成的角。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com