(本題滿分14分)如圖,矩形BCC1B1所在平面垂直于三角形ABC所在平面,BB1=CC1=AC=2,,又E、F分別是C1A和C1B的中點。

   (1)求證:EF//平面ABC;

   (2)求證:平面平面C1CBB1;

   (3)求異面直線AB與EB1所成的角。

 

【答案】

解:(Ⅰ) 在△C1AB中,∵E、F分別是C1A和C1B的中點,

       ∴EF//AB,

       ∵ABÌ平面ABC1,

       ∴EF∥平面AB        C.                     4分

       (Ⅱ) ∵平面BCC1B1⊥平面ABC,且BCC1B1為矩形

       ∴BB1⊥AB,

       又在△ABC中,AB2 + BC2= AC2 ,

       ∴AB⊥BC,∴AB⊥平面C1CBB1,

       ∴平面EFC1⊥平面C1CBB1 .                 5分

   (Ⅲ) ∵EF∥AB, ∴∠FEB1是直線AB與EB1所成的角.           2分

       又∵ AB⊥平面C1CBB1,∴ EF⊥平面C1CBB1 .

       在Rt△EFB1中,EF = , B1F =, www.zxxk.com

       ∴tan∠FEB1 = =, ∠FEB1 =

       即求異面直線AB與EB1所成的角等于.                                   3分

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)如圖2,為了綠化城市,擬在矩形區(qū)域ABCD內(nèi)建一個矩形草坪,另外△AEF內(nèi)部有一文物保護(hù)區(qū)域不能占用,經(jīng)過測量AB=100m,BC=80m,AE=30m,AF=20m,應(yīng)該如何設(shè)計才能使草坪面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)

         如圖,已知直三棱柱ABC—A1B1C1,E是棱CC1上動點,F(xiàn)是AB中點,

   (1)求證:;

   (2)當(dāng)E是棱CC1中點時,求證:CF//平面AEB1;

   (3)在棱CC1上是否存在點E,使得二面角A—EB1—B的大小是45°,若存在,求CE的長,若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟(jì)寧市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿分14分)如圖,在四棱錐E-ABCD中,底面ABCD為正方形, AE⊥平面CDE,已知AE=3,DE=4.

(Ⅰ)若FDE的中點,求證:BE//平面ACF

(Ⅱ)求直線BE與平面ABCD所成角的正弦值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年福建省高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題

(本題滿分14分)如圖,正方形、的邊長都是1,平面平面,點上移動,點上移動,若

(I)求的長;

(II)為何值時,的長最;

(III)當(dāng)的長最小時,求面與面所成銳二面角余弦值的大小.

 

查看答案和解析>>

同步練習(xí)冊答案