已知橢圓的右焦點為,離心率,是橢圓上的動點.
(1)求橢圓標準方程;
(2)若直線的斜率乘積,動點滿足,(其中實數(shù)為常數(shù)).問是否存在兩個定點,使得?若存在,求的坐標及的值;若不存在,說明理由.

(1) (2)存在,

解析試題分析:
(1)根據(jù)題意,可知,可得,從而得到橢圓方程.
(2)假設存在,因為這兩點是由點決定的,而點離不開點,所以設出點,三點,根據(jù),尋找三點坐標之間的關系.可得出結論點是橢圓上的點,根據(jù),可知,所以得到值.進而可確定是否存在兩點
(1)有題設可知: 又
∴橢圓標準方程為
(2)假設存在這樣的兩點,則設,
,
因為點在橢圓上,所以 ,



由題設條件知,因此,所以
 所以點是橢圓上的點,
設該橢圓的左、右焦點為,則由橢圓的定義
又因 
因此兩焦點的坐標為 .
考點:橢圓方程;橢圓定義.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,曲線C1是以原點O為中心,F(xiàn)1,F(xiàn)2為焦點的橢圓的一部分.曲線C2是以O為頂點,F(xiàn)2為焦點的拋物線的一部分,A是曲線C1和C2的交點且∠AF2F1為鈍角,若|AF1|=,|AF2|=

(1)求曲線C1和C2的方程;
(2)設點C是C2上一點,若|CF1|=|CF2|,求△CF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,橢圓的焦點在x軸上,左右頂點分別為,上頂點為B,拋物線分別以A,B為焦點,其頂點均為坐標原點O,相交于直線上一點P.
(1)求橢圓C及拋物線的方程;
(2)若動直線與直線OP垂直,且與橢圓C交于不同的兩點M,N,已知點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓的方程為,定直線的方程為.動圓與圓外切,且與直線相切.
(1)求動圓圓心的軌跡的方程;
(2)直線與軌跡相切于第一象限的點, 過點作直線的垂線恰好經過點,并交軌跡于異于點的點,求直線的方程及的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C的兩焦點分別為,長軸長為6,
⑴求橢圓C的標準方程;
⑵已知過點(0,2)且斜率為1的直線交橢圓C于A 、B兩點,求線段AB的長度。.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(14分)(2011•湖北)平面內與兩定點A1(﹣a,0),A2(a,0)(a>0)連線的斜率之積等于非零常數(shù)m的點的軌跡,加上A1、A2兩點所成的曲線C可以是圓、橢圓成雙曲線.
(Ⅰ)求曲線C的方程,并討論C的形狀與m值的關系;
(Ⅱ)當m=﹣1時,對應的曲線為C1;對給定的m∈(﹣1,0)∪(0,+∞),對應的曲線為C2,設F1、F2是C2的兩個焦點.試問:在C1上,是否存在點N,使得△F1NF2的面積S=|m|a2.若存在,求tanF1NF2的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

過拋物線C:上的點M分別向C的準線和x軸作垂線,兩條垂線及C的準線和x軸圍成邊長為4的正方形,點M在第一象限.
(1)求拋物線C的方程及點M的坐標;
(2)過點M作傾斜角互補的兩條直線分別與拋物線C交于A,B兩點,且直線AB過點(0,-1),求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點,的坐標分別為.直線相交于點,且它們的斜率之積是,記動點的軌跡為曲線.
(1)求曲線的方程;
(2)設是曲線上的動點,直線,分別交直線于點,線段的中點為,求直線與直線的斜率之積的取值范圍;
(3)在(2)的條件下,記直線的交點為,試探究點與曲線的位置關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點是拋物線上不同的兩點,點在拋物線的準線上,且焦點
到直線的距離為.
(I)求拋物線的方程;
(2)現(xiàn)給出以下三個論斷:①直線過焦點;②直線過原點;③直線平行軸.
請你以其中的兩個論斷作為條件,余下的一個論斷作為結論,寫出一個正確的命題,并加以證明.

查看答案和解析>>

同步練習冊答案