19.設(shè)f(x)是(-∞,+∞)上的偶函數(shù),f(x+3)=f(x).當(dāng)0≤x≤1時(shí)有f(x)=3x,則f(8.5)等于( 。
A.-1.5B.-0.5C.0.5D.1.5

分析 由f(x+3)=f(x).得函數(shù)的周期為3,由函數(shù)的周期性可知f(8.5)=f(3×3-0.5)=f(-0.5),由函數(shù)奇偶性可得f(-0.5)=f(0.5),代入即可求得f(8.5)的值.

解答 解:∵f(x+3)=f(x),
∴函數(shù)f(x)是周期函數(shù),周期為3,
∴f(8.5)=f(3×3-0.5)=f(-0.5),
∵函數(shù)f(x)為偶函數(shù),
∴f(-0.5)=f(0.5),
∵當(dāng)0≤x≤1時(shí),f(x)=3x,
∴f(0.5)=3×0.5=1.5,
∴f(8.5)=1.5.
故選:D.

點(diǎn)評(píng) 本題考查抽象函數(shù)及其應(yīng)用以及函數(shù)的求值問(wèn)題.綜合考查了函數(shù)奇偶性和周期性的應(yīng)用,要熟練掌握函數(shù)的性質(zhì)的綜合應(yīng)用.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.將1、$\sqrt{2}$、$\sqrt{3}$、$\sqrt{6}$按如圖所示的方式排列,若規(guī)定(m,n)表示第m排從左往右第n個(gè)數(shù),則(7,5)表示的數(shù)是( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=cos(2x+$\frac{π}{3}$)+sin2x-$\frac{1}{2}$cos2x,x∈[0,$\frac{π}{3}$].若m是使不等式f(x)≤a-$\sqrt{2}$恒成立的a的最小值,則cos$\frac{m^2}{6}$π=( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,點(diǎn)A是橢圓上的一點(diǎn),且點(diǎn)A到橢圓C的兩焦點(diǎn)的距離之和為4,
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)(1,0)作直線l與橢圓C交于A,B兩點(diǎn),O是坐標(biāo)原點(diǎn),設(shè)$\overrightarrow{OS}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,是否存在這樣的直線l,使四邊形OASB的對(duì)角線長(zhǎng)相等?若存在,求出l的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.函數(shù)f(x)=x2+2x+3,x∈[-4,4]的值域是[2,27].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)α,β,γ是三個(gè)不同的平面,a,b是兩個(gè)不同的直線,下列四個(gè)命題中正確的是( 。
A.若a∥α,b∥α,則 a∥bB.若a∥α,a∥β,則 α∥β
C.若a⊥α,b⊥α,則 a∥bD.若α⊥β,α⊥γ,則 β∥γ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知log27$\frac{1}{3}$=x,則x=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.現(xiàn)有:
①不小于$\sqrt{3}$的有理數(shù)  ②某中學(xué)所有高個(gè)子的同學(xué)        ③全部正方形          ④全體無(wú)實(shí)數(shù)根的一元二次方程.
四個(gè)條件所指對(duì)象不能構(gòu)成集合的有②(填代號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)f(x)=log3x-$\frac{1}{x}$的零點(diǎn)所在區(qū)間為( 。
A.(0,$\frac{1}{3}$)B.($\frac{1}{3}$,1)C.(1,3)D.(3,4)

查看答案和解析>>

同步練習(xí)冊(cè)答案