4.設(shè)α,β,γ是三個不同的平面,a,b是兩個不同的直線,下列四個命題中正確的是(  )
A.若a∥α,b∥α,則 a∥bB.若a∥α,a∥β,則 α∥β
C.若a⊥α,b⊥α,則 a∥bD.若α⊥β,α⊥γ,則 β∥γ

分析 對4個選項分別進(jìn)行判斷,即可得出結(jié)論.

解答 解:由α、β、γ是三個不同的平面,a、b是兩條不同的直線,知:
在A中,若a∥α,b∥α,則a與b相交、平行或異面,故A錯誤;
在B中,若若a∥α,a∥β,則α與β相交或平行,故B錯誤;
在C中,根據(jù)垂直于同一平面的兩條直線平行,故C正確;
在D中,若α⊥β,α⊥γ,則β與γ相交或平行,故D錯誤.
故選:C.

點評 本題考查命題真假的判斷,是中檔題,解題時要認(rèn)真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.?dāng)?shù)列{an}的前n項和Sn=An2+Bn(A,B是常數(shù))是數(shù)列{an}是等差數(shù)列的什么條件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某超市為了了解顧客結(jié)算時間的信息,安排一名工作人員收集,整理了該超市結(jié)算時間的統(tǒng)計結(jié)果,如表:
結(jié)算所需的時間(分)12345
頻率0.10.40.30.10.1
假設(shè)每個顧客結(jié)算所需的時間互相獨立,且都是整數(shù)分鐘,從第一個顧客開始辦理業(yè)務(wù)時計時.
(1)估計第三個顧客恰好等待4分鐘開始結(jié)算的概率;
(2)X表示至第2分鐘末已結(jié)算完的顧客人數(shù),求X的分布列及數(shù)學(xué)期望.
(注:將頻率為概率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在平面直角坐標(biāo)系中,A(0,-1),B(m,1),C($\sqrt{3}$,0),若向量$\overrightarrow{AB}$與$\overrightarrow{AC}$夾角為120°,則實數(shù)m的值為(  )
A.0或2$\sqrt{3}$B.2$\sqrt{3}$C.0或-2$\sqrt{3}$D.-2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)f(x)是(-∞,+∞)上的偶函數(shù),f(x+3)=f(x).當(dāng)0≤x≤1時有f(x)=3x,則f(8.5)等于( 。
A.-1.5B.-0.5C.0.5D.1.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{1}{x-1}$-$\frac{2}{{\sqrt{x-1}}}$+2.
(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)若g(x)=f($\frac{{1+{x^2}}}{x^2}$),(x≠0),求g(x)的解析式和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{kx+1(x≤0)}\\{lo{g}_{\frac{1}{2}}x,(x>0)}\end{array}\right.$,則關(guān)于函數(shù)F(x)=f(f(x))的零點個數(shù),正確的結(jié)論是②④.(寫出你認(rèn)為正確的所有結(jié)論的序號)
①k=0時,F(xiàn)(x)恰有一個零點.②k<0時,F(xiàn)(x)恰有2個零點.
③k>0時,F(xiàn)(x)恰有3個零點.④k>0時,F(xiàn)(x)恰有4個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知全集U=R,集合A={x|-7≤2x-1≤7},B={x|m-1≤x≤3m-2}.若A∩B=B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)中,既是偶函數(shù),又是在區(qū)間(0,+∞)上單遞減的函數(shù)是( 。
A.y=ln$\frac{1}{|x|}$B.y=x3C.y=ln(x+$\sqrt{{x^2}+1}$)D.y=sin2x

查看答案和解析>>

同步練習(xí)冊答案