設(shè)O為坐標(biāo)原點(diǎn),A(1,1),若點(diǎn)B(x,y)滿足
x2+y2-2x-2y+1≥0
1≤x≤2
1≤y≤2.
OA
OB
取得最小值時(shí),點(diǎn)B的坐標(biāo)是
(1,2),(2,1)
(1,2),(2,1)
分析:先畫出點(diǎn)B(x,y)滿足
x2+y2-2x-2y+1≥0
1≤x≤2
1≤y≤2
的平面區(qū)域,再把所求問題轉(zhuǎn)化為求,x+y的最小值,借助于圖象以及線性規(guī)劃知識(shí)即可求得結(jié)論.
解答:解:先畫出點(diǎn)B(x,y)滿足
x2+y2-2x-2y+1≥0
1≤x≤2
1≤y≤2
的平面區(qū)域如圖,
又因?yàn)?
OA
OB
=x+y.
所以當(dāng)在點(diǎn)C(2,1)和點(diǎn)B(1,2)處時(shí),x+y最。
即滿足要求的點(diǎn)有兩個(gè).
故答案為:(1,2),(2,1).
點(diǎn)評(píng):本題主要考查向量在幾何中的應(yīng)用以及數(shù)形結(jié)合思想的應(yīng)用,是對(duì)基礎(chǔ)知識(shí)的綜合考查,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)O為坐標(biāo)原點(diǎn),A(1,1),若點(diǎn)B(x,y)滿足
x2+y2≥1
0≤x≤1
0≤y≤1
,則
OA
OB
取得最小值時(shí),點(diǎn)B的個(gè)數(shù)是(  )
A、1B、2C、3D、無數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)O為坐標(biāo)原點(diǎn),A(2,1),P(x,y)坐標(biāo)滿足
x-4y+3≤0
3x+5y≤25
x-1≥0
,則
OA
OP
的最大值為
12
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)O為坐標(biāo)原點(diǎn),A(-
1
p
,0),點(diǎn)M在定直線x=-p(p>0)上移動(dòng),點(diǎn)N在線段MO的延長(zhǎng)線上,且滿足
|OM|
|MN|
=
1
|NA|

(Ⅰ)求動(dòng)點(diǎn)N的軌跡方程,并說明軌跡是什么曲線?
(Ⅱ)若|AN|的最大值≤
3
2
,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:①
1
0
1-x2
dx
=
π
4
,②α,β都是第三象限角,若cosα>cosβ,則sinα>sinβ,③對(duì)于兩個(gè)變量之間的相關(guān)系數(shù)r,|r|≤1且|r|越接近于1,相關(guān)程度越大;|r|越接近于0,相關(guān)程度越;④設(shè)O為坐標(biāo)原點(diǎn),A(1,1),若點(diǎn)B滿足
x2+y2-2x-2y+1≥0
1≤x≤2
1≤y≤2
,則
OA
OB
的最小值為2+
2
.其中正確的命題的個(gè)數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

同步練習(xí)冊(cè)答案