已知函數(shù)的一個極值點.
(Ⅰ)求函數(shù)的單調區(qū)間;
(Ⅱ)若當時,恒成立,求的取值范圍。

(Ⅰ)單調增區(qū)間為,單調減區(qū)間為;(Ⅱ)

解析試題分析:
解:(1)的一個極值點


,函數(shù)的單調增區(qū)間為
函數(shù)的單調減區(qū)間為
(2)由(1)知函數(shù)上單調遞減,在上單調遞增
時,函數(shù)取得最小值,
時,恒成立等價于,

考點:利用導數(shù)求單調區(qū)間,不等式恒成立問題轉化為求函數(shù)最值問題即不等式與函數(shù)的轉化
點評:本題題型是高考常出現(xiàn)的類型,應引起重視

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(10分)已知在x=2時有極大值6,在x=1時有極小值.
⑴ 求的值;
⑵ 求在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知函數(shù)
(Ⅰ)若,試確定函數(shù)的單調區(qū)間;
(Ⅱ)若,且對于任意恒成立,試確定實數(shù)的取值范圍;
(Ⅲ)設函數(shù),求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)
(Ⅰ)討論函數(shù)在定義域內的極值點的個數(shù);
(Ⅱ)若函數(shù)處取得極值,對恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是函數(shù)的一個極值點。
(Ⅰ)求;
(Ⅱ)求函數(shù)的單調區(qū)間;
(Ⅲ)若直線與函數(shù)的圖象有3個交點,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)已知函數(shù)).
①當時,求曲線在點處的切線方程;
②設的兩個極值點,的一個零點.證明:存在實數(shù),使得按某種順序排列后構成等差數(shù)列,并求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
已知函數(shù)f(x)=x3+ax2+(a+6)x+b(a,b∈R).
(1)若函數(shù)f(x)的圖象過原點,且在原點處的切線斜率是3,求a,b的值;
(2)若f(x)為R上的單調遞增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分13分) 已知函數(shù),函數(shù)
(I)當時,求函數(shù)的表達式;
(II)若,且函數(shù)上的最小值是2 ,求的值;
(III)對于(II)中所求的a值,若函數(shù),恰有三個零點,求b的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分15分) 已知函數(shù)處取得極小值.
(1)求m的值。
(2)若上是增函數(shù),求實數(shù)的取值范圍。

查看答案和解析>>

同步練習冊答案