【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),離心率等于,該橢圓的一個(gè)長(zhǎng)軸端點(diǎn)恰好是拋物線的焦點(diǎn).
(1)求橢圓的方程;
(2)已知直線與橢圓的兩個(gè)交點(diǎn)記為、,其中點(diǎn)在第一象限,點(diǎn)、是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn).當(dāng)、運(yùn)動(dòng)時(shí),滿足,試問(wèn)直線的斜率是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.
【答案】(1)
(2)為定值,定值.
【解析】
(1)由題意可求出拋物線的焦點(diǎn)坐標(biāo),即為的值,再根據(jù)離心率等于,及、、的關(guān)系即可求出。
(2)由題意,即直線與直線斜率存在且斜率之和為0,可設(shè)的斜率為,表示出直線與直線的方程,分別聯(lián)立直線方程與橢圓方程,即可用含的式子表示,兩點(diǎn)的坐標(biāo)特征,即可求出直線的斜率。
(1)因?yàn)閽佄锞焦點(diǎn)為,所以,
,∴,
又,所以.
所以橢圓的方程為.
(2)由題意,當(dāng)時(shí),知與斜率存在且斜率之和為0.
設(shè)直線的斜率為,則直線的斜率為,記,,
直線與橢圓的兩個(gè)交點(diǎn)、,
設(shè)的方程為,聯(lián)立,
消得,
由已知知恒成立,所以,
同理可得.
所以,,
,
所以.
所以的斜率為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是二次函數(shù),且f(0)=0,f(x+1)=f(x)+x+1,
(1)求f(x)的表達(dá)式;
(2)若f(x)>a在x∈[﹣1,1]恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】新能源汽車(chē)的春天來(lái)了!2018年3月5日上午,李克強(qiáng)總理做政府工作報(bào)告時(shí)表示,將新能源汽車(chē)車(chē)輛購(gòu)置稅優(yōu)惠政策再延長(zhǎng)三年,自2018年1月1日至2020年12月31日,對(duì)購(gòu)置的新能源汽車(chē)免征車(chē)輛購(gòu)置稅.某人計(jì)劃于2018年5月購(gòu)買(mǎi)一輛某品牌新能源汽車(chē),他從當(dāng)?shù)卦撈放其N(xiāo)售網(wǎng)站了解了近五個(gè)月的實(shí)際銷(xiāo)量如下表:
月份 | 2017.12 | 2018.01 | 2018.02 | 2018.03 | 2018.04 |
月份編號(hào) | 1 | 2 | 3 | 4 | 5 |
銷(xiāo)量(萬(wàn)量) | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)經(jīng)分析,可用線性回歸模型擬合當(dāng)?shù)卦撈放菩履茉雌?chē)實(shí)際銷(xiāo)量(萬(wàn)輛)與月份編號(hào)之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測(cè)2018年5月份當(dāng)?shù)卦撈放菩履茉雌?chē)的銷(xiāo)量;
(2)2018年6月12日,中央財(cái)政和地方財(cái)政將根據(jù)新能源汽車(chē)的最大續(xù)航里程(新能源汽車(chē)的最大續(xù)航里程是指理論上新能源汽車(chē)所裝的燃料或電池所能夠提供給車(chē)跑的最遠(yuǎn)里程)對(duì)購(gòu)車(chē)補(bǔ)貼進(jìn)行新一輪調(diào)整.已知某地?cái)M購(gòu)買(mǎi)新能源汽車(chē)的消費(fèi)群體十分龐大,某調(diào)研機(jī)構(gòu)對(duì)其中的200名消費(fèi)者的購(gòu)車(chē)補(bǔ)貼金額的心理預(yù)期值進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:
補(bǔ)貼金額預(yù)期值區(qū)間(萬(wàn)元) | ||||||
頻數(shù) | 20 | 60 | 60 | 30 | 20 | 10 |
(i)求這200位擬購(gòu)買(mǎi)新能源汽車(chē)的消費(fèi)者對(duì)補(bǔ)貼金額的心理預(yù)期值的方差及中位數(shù)的估計(jì)值(同一區(qū)間的預(yù)期值可用該區(qū)間的中點(diǎn)值代替,估計(jì)值精確到0.1);
(ii)將頻率視為概率,現(xiàn)用隨機(jī)抽樣方法從該地區(qū)擬購(gòu)買(mǎi)新能源汽車(chē)的所有消費(fèi)者中隨機(jī)抽取3人,記被抽取的3人中對(duì)補(bǔ)貼金額的心理預(yù)期值不低于3萬(wàn)元的人數(shù)為,求的分布列及數(shù)學(xué)期望.
附:①回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,;②.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元。該建筑物每年的能源消耗費(fèi)用C(單位:萬(wàn)元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元。設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和。
(Ⅰ)求k的值及f(x)的表達(dá)式。
(Ⅱ)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)為曲線上的動(dòng)點(diǎn),點(diǎn)在線段上,且滿足,求點(diǎn)的軌跡的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)在曲線上,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的“對(duì)稱(chēng)美”.如圖所示的太極圖是由黑白兩個(gè)魚(yú)形紋組成的圓形圖案,充分體現(xiàn)了相互變化、對(duì)稱(chēng)統(tǒng)一的形式美、和諧美.給出定義:能夠?qū)A(為坐標(biāo)原點(diǎn))的周長(zhǎng)和面積同時(shí)平分的函數(shù)稱(chēng)為這個(gè)圓的“優(yōu)美函數(shù)”.給出下列命題:
①對(duì)于任意一個(gè)圓,其“優(yōu)美函數(shù)”有無(wú)數(shù)個(gè);
②函數(shù)可以是某個(gè)圓的“優(yōu)美函數(shù)”;
③正弦函數(shù)可以同時(shí)是無(wú)數(shù)個(gè)圓的“優(yōu)美函數(shù)”;
④函數(shù)是“優(yōu)美函數(shù)”的充要條件為函數(shù)的圖象是中心對(duì)稱(chēng)圖形.
A.①④B.①③④C.②③D.①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐的底面ABCD是直角梯形,AD//BC,,E為CD的中點(diǎn),
(1)證明:平面PBD平面ABCD;
(2)若,PC與平面ABCD所成的角為,試問(wèn)“在側(cè)面PCD內(nèi)是否存在一點(diǎn)N,使得平面PCD?”若存在,求出點(diǎn)N到平面ABCD的距離;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線,曲線(為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求,的極坐標(biāo)方程;
(2)射線l的極坐標(biāo)方程為,若l分別與,交于異于極點(diǎn)的,兩點(diǎn),求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com