【題目】若函數(shù)定義域?yàn)?/span>,且對(duì)任意實(shí)數(shù),有,則稱(chēng)為“形函數(shù)”,若函數(shù)定義域?yàn)?/span>,函數(shù)對(duì)任意恒成立,且對(duì)任意實(shí)數(shù),有,則稱(chēng)為“對(duì)數(shù)形函數(shù)” .
(1)試判斷函數(shù)是否為“形函數(shù)”,并說(shuō)明理由;
(2)若是“對(duì)數(shù)形函數(shù)”,求實(shí)數(shù)的取值范圍;
(3)若是“形函數(shù)”,且滿(mǎn)足對(duì)任意,有,問(wèn)是否為“對(duì)數(shù)形函數(shù)”?證明你的結(jié)論.
【答案】(1)見(jiàn)解析;(2);(3)見(jiàn)解析.
【解析】試題分析:
(1)結(jié)合題中的定義和函數(shù)的性質(zhì)可得所給函數(shù)不是“形函數(shù)”
(2)由題意分離系數(shù),結(jié)合函數(shù)解析式的特征可得;
(3)利用“形函數(shù)”結(jié)合題意討論可得是“對(duì)數(shù)形函數(shù)”.
試題解析:
(1),,
當(dāng)、同號(hào)時(shí),,不滿(mǎn)足,∴不是“形函數(shù)”
(2)恒成立,∴,根據(jù)題意,恒成立,
即,去括號(hào)整理得,∴
(3),∵,∴,同理,
∴,去括號(hào)整理得,
∴,,是“對(duì)數(shù)形函數(shù)”
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線的普通方程;
(2)經(jīng)過(guò)點(diǎn)(平面直角坐標(biāo)系中點(diǎn))作直線交曲線于兩點(diǎn),若恰好為線段的三等分點(diǎn),求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)求證: ;
(3)求證:當(dāng)時(shí), , 恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),方程在區(qū)間內(nèi)有唯一實(shí)數(shù)解,求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是我國(guó)2008年至2014年生活垃圾無(wú)害化處理量(單位:億噸)的折線圖.
(Ⅰ)由折線圖看出,可用線性回歸模型擬合與的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;
(Ⅱ)建立關(guān)于的回歸方程(系數(shù)精確到0.01),預(yù)測(cè)2016年我國(guó)生活垃圾無(wú)害化處理量.
參考數(shù)據(jù): , , , .
參考公式:相關(guān)系數(shù),
回歸方程, ,
本題中斜率和截距的最小二乘估計(jì)公式分別為: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1,圓心在上.
(1)若圓心也在直線上,過(guò)點(diǎn)作圓的切線,求切線的方程;
(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1在△中,,、分別為線段、的中點(diǎn),,.以為折痕,將△折起到圖2的位置,使平面⊥平面,連接,,設(shè)是線段上的動(dòng)點(diǎn),滿(mǎn)足.
(1)證明:平面⊥平面;
(2)若二面角的大小為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)求證: ;
(3)求證:當(dāng)時(shí), , 恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量(單位:噸)對(duì)價(jià)格(單位:千元/噸)和利潤(rùn)的影響,對(duì)近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價(jià)格統(tǒng)計(jì)如下表:
(1)求關(guān)于的線性回歸方程;
(2)若每噸該農(nóng)產(chǎn)品的成本為2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣(mài)出,預(yù)測(cè)當(dāng)年產(chǎn)量為多少時(shí),年利潤(rùn)取到最大值?(結(jié)果保留兩位小數(shù))
參考公式: ,
參考數(shù)據(jù): , .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com