設(shè)F是拋物線y2=2px(p>0)的焦點(diǎn),點(diǎn)P的坐標(biāo)為(0,2),線段PF交拋物線于點(diǎn)M,M在準(zhǔn)線l上的射影為N,若∠PNF=90°,則p的值為(  )
A、
1
2
B、1
C、
2
D、3
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:利用拋物線的定義,結(jié)合∠PNF=90°,可得M為線段PF的中點(diǎn),求出M的坐標(biāo),代入拋物線y2=2px(p>0),即可求出p的值.
解答: 解:由拋物線的定義可得MF=MN,F(xiàn)(
p
2
,0),
又∠PNF=90°,故M為線段PF的中點(diǎn),
∴M(
p
4
,1)代入拋物線y2=2px(p>0)得,1=2p×
p
4
,
∴p=
2
,
故選:C.
點(diǎn)評(píng):本題考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,判斷M為線段PF的中點(diǎn)是解題的關(guān)鍵,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

隨機(jī)變量ξ的分布列如表:
ξ 1 2 3
P a b c
其中a,b,c成等差數(shù)列.若E(ξ)=
5
3
,則D(ξ)的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
=(1,λ,2),
b
=(2,-1,2),cos<
a
,
b
>=
8
9
,則λ的值為(  )
A、-2
B、
2
55
C、-2或
2
55
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

物體運(yùn)動(dòng)的方程s=
1
3
t3+3,則t=2時(shí)的瞬時(shí)速度為(  )
A、2B、4C、-2D、-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P(-1,1)關(guān)于直線ax-y+b=0的對(duì)稱點(diǎn)是Q(3,-1),則a、b的值依次是( 。
A、-2,2
B、2,-2
C、
1
2
,-
1
2
D、-
1
2
,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α,β為兩個(gè)不重合的平面,m,n是兩條不重合的直線,則下列四個(gè)命題中是真命題的是(  )
A、若m⊥n,m⊥α,則n∥α
B、若n?α,m?β,α與β相交且不垂直,則n與m不垂直
C、若α⊥β,α∩β=m,m⊥n,則n⊥β
D、若m∥n,n⊥α,α∥β,則m⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)滿足對(duì)于?x∈R,都有f(1+x)=f(1-x),且當(dāng)x∈[-1,0]時(shí),f(x)=-x2,又函數(shù)g(x)=|sinπx|,則函數(shù)h(x)=f(x)-g(x)在[-2,2]上的零點(diǎn)個(gè)數(shù)是( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x
-
1
3x
10的展開式中含x的負(fù)整數(shù)指數(shù)冪的項(xiàng)數(shù)是( 。
A、0B、2C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a1=2,an=2-
1
an-1

(1)求證bn=
1
an-1
為等差數(shù)列;
(2)求cn=
1
bnbn+1
的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案