在長方體中,,,為中點(diǎn).(Ⅰ)證明:;(Ⅱ)求與平面所成角的正弦值;(Ⅲ)在棱上是否存在一點(diǎn),使得∥平面?若存在,求的長;若不存在,說明理由.
(Ⅰ)先證平面(Ⅱ)(Ⅲ)的長.
【解析】
試題分析:(Ⅰ)證明:連接∵是長方體,∴平面,又平面 ∴
在長方形中, ∴
又∴平面,
而平面∴
(Ⅱ)如圖建立空間直角坐標(biāo)系,則
,
設(shè)平面的法向量為,則 令,則 ,
所以 與平面所成角的正弦值為
(Ⅲ)假設(shè)在棱上存在一點(diǎn),使得∥平面.
設(shè)的坐標(biāo)為,則 因?yàn)?nbsp;∥平面
所以 ,即, ,解得,
所以 在棱上存在一點(diǎn),使得∥平面,此時(shí)的長.
考點(diǎn):直線與平面垂直的判定;直線與平面所成的角.
點(diǎn)評:本小題主要考查空間線面關(guān)系、直線與平面所成的角、三角函數(shù)等知識,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運(yùn)算求解能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
7 |
6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com