【題目】函數(shù)圖象上不同兩點(diǎn),,處的切線的斜率分別是,規(guī)定叫曲線在點(diǎn)與點(diǎn)之間的“彎曲度”,給出以下命題:

1)函數(shù)圖象上兩點(diǎn)、的橫坐標(biāo)分別為1,2,則

2)存在這樣的函數(shù),圖象上任意兩點(diǎn)之間的“彎曲度”為常數(shù);

3)設(shè)點(diǎn)、是拋物線,上不同的兩點(diǎn),則;

4)設(shè)曲線上不同兩點(diǎn),,,且,若恒成立,則實(shí)數(shù)的取值范圍是

以上正確命題的序號(hào)為__(寫出所有正確的)

【答案】2)(3

【解析】

由新定義,利用導(dǎo)數(shù)逐一求出函數(shù)、在點(diǎn)與點(diǎn)之間的“彎曲度”判斷(1)、(3);舉例說(shuō)明(2)正確;求出曲線上不同兩點(diǎn),,之間的“彎曲度”,然后結(jié)合得不等式,舉反例說(shuō)明(4)錯(cuò)誤.

解:對(duì)于(1),由,得,

,

,,則

,(1)錯(cuò)誤;

對(duì)于(2),常數(shù)函數(shù)滿足圖象上任意兩點(diǎn)之間的“彎曲度”為常數(shù),(2)正確;

對(duì)于(3),設(shè),,,,

,

,(3)正確;

對(duì)于(4),由,得,

恒成立,即恒成立,時(shí)該式成立,4)錯(cuò)誤.

故答案為:(2)(3).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為等差數(shù)列,各項(xiàng)為正的等比數(shù)列的前項(xiàng)和為,,,__________.在①;②;③這三個(gè)條件中任選其中一個(gè),補(bǔ)充在橫線上,并完成下面問(wèn)題的解答(如果選擇多個(gè)條件解答,則以選擇第一個(gè)解答記分).

1)求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】)過(guò)點(diǎn),離心率為,其左、右焦點(diǎn)分別為,,且過(guò)焦點(diǎn)的直線交橢圓于,.

(Ⅰ)求橢圓的方程;

(Ⅱ)若點(diǎn)的坐標(biāo)為,設(shè)直線與直線的斜率分別為,試證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面為線段上一點(diǎn),的中點(diǎn).

(1)證明:平面;

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的三棱錐中,是邊長(zhǎng)為2的等邊三角形,,的中位線,為線段的中點(diǎn).

1)證明:.

2)若二面角為直二面角,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為考察高中生的性別與是否喜歡數(shù)學(xué)課程之間的關(guān)系,某校在高中生中隨機(jī)抽取100名學(xué)生進(jìn)行了問(wèn)卷調(diào)查,得到如下列聯(lián)表:

喜歡數(shù)學(xué)

不喜歡數(shù)學(xué)

合計(jì)

男生

40

女生

30

合計(jì)

50

100

1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;

2)能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為喜歡數(shù)學(xué)與性別有關(guān)?說(shuō)明你的理由;

3)若在接受調(diào)查的所有男生中按照是否喜歡數(shù)學(xué)進(jìn)行分層抽樣,現(xiàn)隨機(jī)抽取6人,再?gòu)?/span>6人中抽取3人,求至少有1不喜歡數(shù)學(xué)的概率.

下面的臨界值表供參考:

0.05

0.010

0.005

0.001

k

3.841

6.635

7.879

10.828

(參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,求的零點(diǎn)個(gè)數(shù);

2)若,,證明:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,右焦點(diǎn)為。斜率為1的直線與橢圓交于兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為。

1)求橢圓的方程;

2)求的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),其短半軸長(zhǎng)為,一個(gè)焦點(diǎn)坐標(biāo)為,點(diǎn)在橢圓上,點(diǎn)在直線上的點(diǎn),且

證明:直線與圓相切;

面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案