求函數(shù)y=
x2+6x+14
x+1
(x>-1)的最小值.
考點:基本不等式
專題:不等式的解法及應用
分析:由題意得
x2+6x+14
x+1
=
x2+2x+1+4x+4+9
x+1
=(x+1)+
9
x+1
+4
,再利用基本不等式的性質(zhì)求出最小值即可.
解答: 解:
x2+6x+14
x+1
=
x2+2x+1+4x+4+9
x+1
=(x+1)+
9
x+1
+4
≥2
(x+1)•
9
x+1
+4
=10,當且僅當x=2時取等號,
故函數(shù)y=
x2+6x+14
x+1
(x>-1)的最小值為10.
點評:本題主要考查了基本不等式的應用,關鍵等式的變形,注意等號成立的條件,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在⊙O的直徑AB的延長線上任取一點C,過點C引直線與⊙O交于點D、E,在⊙O上再取一點F,使
AE
=
AF

(Ⅰ)求證:E、D、G、O四點共圓;
(Ⅱ)如果CB=OB,試求
CB
CG
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=
a2-1
x2+(a-1)x+
2
a+1
的定義域為R,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

7名男生5名女生中選5人,分別求符合下列的選法總數(shù).(以下問題全部用數(shù)字作答)
(1)A,B必須當選;
(2)A,B不全當選;
(3)選取3名男生和2名女生分別擔任班長,體育委員等5種不同的工作,但體育必須有男生來擔任,班長必須有女生來擔任.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線D的頂點是橢圓
x2
4
+
y2
3
=1的中心,焦點與該橢圓的右焦點重合
(1)求拋物線D的方程;
(2)已知動直線l過點P(4,0),交拋物D于A,B兩點,坐標原點O為PQPQ中點,求證∠AQP=∠BQP.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一個正方體的所有頂點在同一個球面上,若球的表面積為9π,則正方體的棱長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方體ABCD-A1B1C1D1中,二面角A-CD-A1的大小為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

cos(π+α)=-
3
5
,則cosα=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

方程lg(x+1)+1=lg(x2-1)的解是
 

查看答案和解析>>

同步練習冊答案