如圖,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,AA1=4,點D是BC的中點.
(Ⅰ)求證:A1B∥平面ADC1;
(Ⅱ)求平面ADC1與ABA1所成二面角的平面角的正弦值.
考點:二面角的平面角及求法,直線與平面平行的判定
專題:綜合題,空間位置關系與距離,空間角
分析:(Ⅰ)連接A1C,交C1A于E,證明:DE∥A1B,即可證明A1B∥平面ADC1;
(Ⅱ)建立空間直角坐標系,求出平面ABA1的一個法向量、平面ADC1的法向量,利用向量的夾角公式,即可求平面ADC1與ABA1所成二面角的平面角的正弦值.
解答: (Ⅰ)證明:連接A1C,交C1A于E,則E為A1C的中點,又點D是BC的中點,
所以DE∥A1B,…(3分)
又DE?平面ADC1,A1B?平面ADC1,故A1B∥平面ADC1.          …(5分)
(Ⅱ)解:如圖建立空間直角坐標系A-xyz,

則A(0,0,0),C(0,2,0),D(1,1,0),C1(0,2,4),…(6分)
AC
=(0,2,0)是平面ABA1的一個法向量,…(7分)
設平面ADC1的法向量
m
=(x,y,z).
AD
=(1,1,0),
AC1
=(0,2,4),
x+y=0
2y+4z=0

取z=1,得y=-2,x=2
∴平面ADC1的法向量
m
=(2,-2,1),…(9分)
平面ADC1與ABA1所成的二面角為θ,
∴|cosθ|=|
-4
2×3
|=
2
3
.…(11分)
從而sinθ=
5
3
,即平面ADC1與ABA1所成二面角的正弦值為
5
3
  …(13分)
點評:本題考查線面平行,考查平面ADC1與ABA1所成二面角的正弦值,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠ACB=2∠ABC,AF、CF分別是△ABC的外角平分線,連接BF,若
AB
AC
=
8
5
,則tan∠AFB的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cosxsin(x+
π
3
)-3cos2x+
3
4
,求f(x)的最小正周期.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
4
+
y2
3
=1
的左頂點為A1,右焦點為F2,點P為橢圓上的一點,則當
PA1
PF2
取最小值時,求|
PA1
+
PF2
|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體中,A、B為正方體的兩個頂點,M、N、P為所在棱的中點,則異面直線MP、AB在正方體的正視圖中的位置關系是( 。
A、相交B、平行C、異面D、不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F(x)=f(x)-g(x),其中f(x)=2loga(4-x)(a>0且a≠1),并且當且僅當點P(x0,y0)在f(x)的圖象上時,點Q(-
1
5
x0,
1
2
y0)在y=g(x)的圖象上.
(1)求y=g(x)的解析式;
(2)解關于x的不等式F(x)≥0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,側(cè)棱AA⊥底面ABC,且側(cè)棱和底面邊長均為2,D是BC的中點
(1)求證:AD⊥平面BB1CC1;
(2)求證:A1B∥平面ADC1;
(3)求三棱錐C1-ADB1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某次有1000人參加數(shù)學摸底考試,其成績的頻率分布直方圖如題(16)圖所示,規(guī)定85分及以上為優(yōu)秀.
(1)下表是這次考試成績的頻數(shù)分布表,求正整數(shù)a,b的值;
區(qū)間[75,80)[80,85)[85,90)[90,95)[95,100]
人數(shù)50a350300b
(2)某文科班數(shù)學老師抽取10名同學的數(shù)學成績對該科進行抽樣分析,得到第i個同學每天花在數(shù)學上的學習時間xi(單位:小時)與數(shù)學考試成績yi(單位:百分)的數(shù)據(jù)資料,算得
10
i=1
xi=15,
10
i=1
yi=10,
10
i=1
xiyi=16,
10
i=1
x_2 
=25,求數(shù)學考試成績y對每天花在數(shù)學上的學習時間x的線性回歸方程
y
=bx+a;
附:線性回歸方程y=bx+a中,b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n\mathopxlimits-2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合S={x|(x+2)(x-5)<0},P={x|a+1<x<2a+15},若S∪P=P,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案