在極坐標(biāo)系中,已知點,點是曲線上任意一點,設(shè)點到直線的距離為,則的最小值為     

 

【答案】

【解析】

試題分析:將點的坐標(biāo)化為直角坐標(biāo)為,將曲線的方程化為直角坐標(biāo)方程為,直線的直角坐標(biāo)方程為,即,此直線為曲線的準(zhǔn)線,拋物線的焦點,根據(jù)拋物線的定義知,

故當(dāng)、三點共線時,取最小值,最小值為.

考點:極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化,拋物線的定義

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,已知點A(2,π),B(2,
π2
)
,C是曲線ρ=2cosθ上任意一點,則△ABC的面積的最小值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,已知點A(1,
4
)和B(2,
π
4
)
,則A、B兩點間的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,已知點P(2,
π
6
),則過點P且平行于極軸的直線的方程是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選講)在極坐標(biāo)系中,已知點A(2,0),點P在曲線C:ρ=
2+2cosθ
sin2θ
上運動,則P、A兩點間的距離的最小值是
2
2
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,已知點P(2,
π3
),則過點P且平行于極軸的直線的極坐標(biāo)方程為
 

查看答案和解析>>

同步練習(xí)冊答案