【題目】已知拋物線,圓.

(1)若拋物線的焦點(diǎn)在圓上,且和圓 的一個(gè)交點(diǎn),求

(2)若直線與拋物線和圓分別相切于點(diǎn),求的最小值及相應(yīng)的值.

【答案】(1);2的最小值為,此時(shí).

【解析】

試題分析:(1)首先求得焦點(diǎn)的坐標(biāo),由此求得拋物線的方程,然后聯(lián)立拋物線與圓的方程求得,最后利用拋物線的定義求得的長(zhǎng)2設(shè),由此設(shè)出直線切線的方程,然后根據(jù)求得的關(guān)系式,從而求得關(guān)于的關(guān)系式,進(jìn)而利用基本不等式求得其最小值,以及的值.

試題解析:1由題意得F(1,0),從而有C:x24y.

解方程組,得yA-2,所以|AF|-1. 5

(2)設(shè)M(x0,y0),則切線l:y(xx0)+y0

整理得x0xpypy00. 6

由|ON|1得|py0|,

所以p且y-1>0, 8

所以|MN|2|OM|2-1xy-12py0y-1

y-1=4+(y-1)8,當(dāng)且僅當(dāng)y0時(shí)等號(hào)成立,

所以|MN|的最小值為2,此時(shí)p. 12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,以為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.

1求橢圓的標(biāo)準(zhǔn)方程;

2已知點(diǎn),和平面內(nèi)一點(diǎn),過(guò)點(diǎn)任作直線與橢圓相交于兩點(diǎn),設(shè)直線的斜率分別為,試求滿(mǎn)足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20名同學(xué)參加某次數(shù)學(xué)考試成績(jī)(單位:分)的頻率分布直方圖如下:

)求頻率分布直方圖中的值;

)分別求出成績(jī)落在, 中的學(xué)生人數(shù);

)從成績(jī)?cè)?/span>的學(xué)生中任選2人,求此2人的成績(jī)都在中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若定義在R上的偶函數(shù)f(x)滿(mǎn)足f(x+2)=f(x),且當(dāng)x[0,1]時(shí),f(x)=x,則函數(shù)y=f(x)-log3|x|的零點(diǎn)個(gè)數(shù)是( )

A.多于4個(gè) B.4個(gè)

C.3個(gè) D.2個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(1)當(dāng)時(shí),上恒成立,求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),若函數(shù)上恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍;

(3)是否存在常數(shù),使函數(shù)和函數(shù)在公共定義域上具有相同的單調(diào)性?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,底面是邊長(zhǎng)為的菱形,.

(1)證明:平面;

(2)若求二面角 的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某校舉行的航天知識(shí)競(jìng)賽中,參與競(jìng)賽的文科生與理科生人數(shù)之比為,且成績(jī)分布在,分?jǐn)?shù)在以上(含的同學(xué)獲獎(jiǎng). 按文理科用分層抽樣的方法抽取人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖(見(jiàn)下圖).

(1)的值,并計(jì)算所抽取樣本的平均值同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)填寫(xiě)下面的列聯(lián)表,能否有超過(guò)的把握認(rèn)為獲獎(jiǎng)與學(xué)生的文理科有關(guān)

文科生

理科生

合計(jì)

獲獎(jiǎng)

不獲獎(jiǎng)

合計(jì)

附表及公式:

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(2)若對(duì)任意及任意, ,恒有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究“教學(xué)方式”對(duì)教學(xué)質(zhì)量的影響,某高中老師分別用兩種不同的教學(xué)方式對(duì)入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班進(jìn)行教學(xué)(勤奮程度和自覺(jué)性都一樣).如圖莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績(jī).

(1)現(xiàn)從甲班數(shù)學(xué)成績(jī)不低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績(jī)?yōu)?7分的同學(xué)至少有一名被抽中的概率;

(2)學(xué)校規(guī)定:成績(jī)不低于75分的為優(yōu)秀,請(qǐng)?zhí)顚?xiě)列聯(lián)表,并判斷有多大把握認(rèn)為“成績(jī)優(yōu)秀與教學(xué)方式有關(guān)”.

甲班

乙班

合計(jì)

優(yōu)秀

不優(yōu)秀

合計(jì)

參考公式與臨界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案