(2009•浦東新區(qū)二模)若A(4,1),B(1 , 
1
2
)
C(x , -
3
2
)
,且
AB
AC
=0
,則x=
53
12
53
12
分析:由A(4,1),B(1 , 
1
2
)
,C(x , -
3
2
)
,得
AB
=(-3,-
1
2
)
AC
=(x-4,-
5
2
)
,由
AB
AC
=0
,-3(x-4)+
5
4
=0
,由此能求出x.
解答:解:∵A(4,1),B(1 , 
1
2
)
,C(x , -
3
2
)
,
AB
=(-3,-
1
2
)
,
AC
=(x-4,-
5
2
)

AB
AC
=0
,
-3(x-4)+
5
4
=0

解得x=
53
12

故答案為:
53
12
點評:本題考查平面向量數(shù)量積的求法,解題時要注意平面向量的求法和兩個平面向量垂直的條件的靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•浦東新區(qū)一模)如圖:某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設(shè)污水凈化管道(Rt△FHE,H是直角頂點)來處理污水,管道越短,鋪設(shè)管道的成本越低.設(shè)計要求管道的接口H是AB的中點,E,F(xiàn)分別落在線段BC,AD上.已知AB=20米,AD=10
3
米,記∠BHE=θ.
(1)試將污水凈化管道的長度L表示為θ的函數(shù),并寫出定義域;
(2)若sinθ+cosθ=
3
+1
2
,求此時管道的長度L;
(3)問:當θ取何值時,鋪設(shè)管道的成本最低?并求出此時管道的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•浦東新區(qū)一模)已知數(shù)列{an}是等比數(shù)列,其前n項和為Sn,若S2=12,S3=a1-6,則
limn→∞
Sn
=
16
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•浦東新區(qū)一模)函數(shù)y=2sin2x的最小正周期為
π
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•浦東新區(qū)一模)對于函數(shù)f1(x),f2(x),h(x),如果存在實數(shù)a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x),f2(x)的生成函數(shù).
(1)下面給出兩組函數(shù),h(x)是否分別為f1(x),f2(x)的生成函數(shù)?并說明理由.
第一組:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+
π
3
)
;
第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
(2)設(shè)f1(x)=log2x,f2(x)=log
1
2
x,a=2,b=1
,生成函數(shù)h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求實數(shù)t的取值范圍.
(3)設(shè)f1(x)=x(x>0),f2(x)=
1
x
(x>0)
,取a>0,b>0生成函數(shù)h(x)圖象的最低點坐標為(2,8).若對于任意正實數(shù)x1,x2且x1+x2=1,試問是否存在最大的常數(shù)m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個m的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•浦東新區(qū)二模)在△ABC中,A、B、C所對的邊分別為a、b、c已知a=2
3
 , c=2
,且
.
sinCsinB0
0b-2c
cosA01
.
=0
,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案