已知曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)把的參數(shù)方程化為極坐標方程;
(Ⅱ)求交點的極坐標().

(I).
(II)交點的極坐標分別為,.

解析試題分析:(I)利用“平方關系消元法”,先將參數(shù)方程化為普通方程,再利用代入即得.
(II)先將曲線的極坐標方程為.化為直角坐標方程為:
通過的直角坐標方程聯(lián)立,確定得到直角坐標,再化為極坐標.
試題解析:(I)由曲線的參數(shù)方程為(為參數(shù)),得即為圓的普通方程,即
代入上式得,,此即為的極坐標方程;
(II)曲線的極坐標方程為.化為直角坐標方程為:
,解得
交點的極坐標分別為,.
考點:1、參數(shù)方程化成普通方程;2、點的極坐標和直角坐標的互化.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,斜率為的直線過拋物線的焦點,與拋物線交于兩點A、B, M為拋物線弧AB上的動點.

(Ⅰ)若,求拋物線的方程;
(Ⅱ)求△ABM面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在周長為定值的DDEC中,已知,動點C的運動軌跡為曲線G,且當動點C運動時,有最小值
(1)以DE所在直線為x軸,線段DE的中垂線為y軸建立直角坐標系,求曲線G的方程;
(2)直線l分別切橢圓G與圓(其中)于A、B兩點,求|AB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線與雙曲線有公共焦點,點是曲線在第一象限的交點,且
(1)求雙曲線的方程;
(2)以雙曲線的另一焦點為圓心的圓與直線相切,圓.過點作互相垂直且分別與圓、圓相交的直線,設被圓截得的弦長為被圓截得的弦長為,問:是否為定值?如果是,請求出這個定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,直線l與拋物線相交于不同的兩點A,B.
(I)如果直線l過拋物線的焦點,求的值;
(II)如果,證明直線l必過一定點,并求出該定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知分別是橢圓的左、右焦點,橢圓的離心率
(I)求橢圓的方程;(II)已知直線與橢圓有且只有一個公共點,且與直線相交于點.求證:以線段為直徑的圓恒過定點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知△ABC的兩個頂點A,B的坐標分別是(-5,0),(5,0),且AC,BC所在直
線的斜率之積等于m(m≠0),求頂點C的軌跡.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設點A(,0),B(,0),直線AM、BM相交于點M,且它們的斜率之積為.
(Ⅰ)求動點M的軌跡C的方程;
(Ⅱ)若直線過點F(1,0)且繞F旋轉,與圓相交于P、Q兩點,與軌跡C相交于R、S兩點,若|PQ|求△的面積的最大值和最小值(F′為軌跡C的左焦點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知定點A(-2,0)、B(2,0),異于A、B兩點的動點P滿足,其中k1、k2分別表示直線AP、BP的斜率.

(Ⅰ)求動點P的軌跡E的方程;
(Ⅱ)若N是直線x=2上異于點B的任意一點,直線AN與(I)中軌跡E交予點Q,設直線QB與以NB為直徑的圓的一個交點為M(異于點B),點C(1,0),求證:|CM|·|CN| 為定值.

查看答案和解析>>

同步練習冊答案