已知:數(shù)列{an}的前n項和為Sn,滿足Sn=2an-2n(n∈N*)
(1)求數(shù)列{an}的通項公式an;
(2)若數(shù)列{bn}滿足bn=log2(an+2),而Tn為數(shù)列{
bnan+2
}
的前n項和,求Tn
分析:(1)已知前n項和與通項的關系,可以再寫一式,兩式相減,從而構建新數(shù)列{an+2}是以a1+2為首項,以2為公比的等比數(shù)列,進而求出通項;(2)先分析出{
bn
an+2
}
通項的特點,再用錯位相減法求和.
解答:解:(1)當n∈N*時,Sn=2an-2n,①則當n≥2,n∈N*時,Sn-1=2an-1-2(n-1).②
①-②,得an=2an-2an-1-2,即an=2an-1+2,∴an+2=2(an-1+2)∴
an+2
an-1+2
=2.
當n=1 時,S1=2a1-2,則a1=2,當n=2時,a2=6,∴{an+2}是以a1+2為首項,以2為公比的等比數(shù)列.
∴an+2=4•2n-1,∴an=2n+1-2,(7分)
(2)由bn=log2(an+2)=log22n+1=n+1,得
bn
an+2
=
n+1
2n+1

則Tn=
2
22
+
3
23
+…+
n+1
2n+1
,③
1
2
Tn=
2
23
+…+
n
2n+1
+
n+1
2n+2
,④
③-④,得
1
2
Tn=
2
22
+
1
23
+
1
24
+…+
1
2n+1
-
n+1
2n+2

=
1
4
+
1
4
(1-
1
2n
)
1-
1
2
-
n+1
2n+2

=
1
4
+
1
2
-
1
2n+1
-
n+1
2n+2

=
3
4
-
n+3
2n+2

∴Tn=
3
2
-
n+3
2n+1
(14分)
點評:有些數(shù)列不易直接化成等差或等比數(shù)列,但經(jīng)推理可尋求特殊的關系轉(zhuǎn)化為等差或等比數(shù)列求解
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2010•濟南一模)已知:數(shù)列{an}的前n項和為Sn,a1=3且當n≥2n∈N+滿足Sn-1是an與-3的等差中項.
(1)求a2,a3,a4;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正數(shù)數(shù)列{an}的前n項和Sn滿足Sn=
1
8
(a n+2)2
(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設bn=
8
anan+1
,(n∈N*)且數(shù)列{bn}的前n項和為Tn,如果Tn<m2-m-5對一切n∈N*成立,求正數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一個數(shù)列{an}的各項是1或2.首項為1,且在第k個1和第k+1個1之間有f(k)個2,記數(shù)列的前n項的和為Sn
(1)若f(k)=2k-1,求S100
(2)若f(k)=2k-1,求S2011

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:數(shù)列{an}的前n項和為Sn,滿足a1=1,當n∈N+時,Sn=an-n-1.
(1)求a2,a3,a4;
(2)猜想an,并用數(shù)學歸納法證明你的猜想;
(3)已知
lim
n→∞
an
an+1+(a+1)n
=
1
2
,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正數(shù)列{an}的前n項和為Sn,且有Sn=
1
4
(an+1)2
,數(shù)列b1,b2-b1,b3-b2,…,bn-bn-1是首項為1,公比為
1
2
的等比數(shù)列.
(1)求證數(shù)列{an}是等差數(shù)列;
(2)若cn=an•(2-bn),求數(shù)列{cn}的前n項和Tn;
(3)在(2)條件下,是否存在常數(shù)λ,使得數(shù)列(
Tn
an+2
)
為等比數(shù)列?若存在,試求出λ;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案