北京市各級(jí)各類(lèi)中小學(xué)每年都要進(jìn)行“學(xué)生體質(zhì)健康測(cè)試”,測(cè)試總成績(jī)滿(mǎn)分為分,規(guī)定測(cè)試成績(jī)?cè)?img src="http://thumb.zyjl.cn/pic5/tikupic/83/f/1uftb3.png" style="vertical-align:middle;" />之間為體質(zhì)優(yōu)秀;在之間為體質(zhì)良好;在之間為體質(zhì)合格;在之間為體質(zhì)不合格.
現(xiàn)從某校高三年級(jí)的名學(xué)生中隨機(jī)抽取名學(xué)生體質(zhì)健康測(cè)試成績(jī),其莖葉圖如下:

(Ⅰ)試估計(jì)該校高三年級(jí)體質(zhì)為優(yōu)秀的學(xué)生人數(shù);
(Ⅱ)根據(jù)以上名學(xué)生體質(zhì)健康測(cè)試成績(jī),現(xiàn)采用分層抽樣的方法,從體質(zhì)為優(yōu)秀和良好的學(xué)生中抽取名學(xué)生,再?gòu)倪@名學(xué)生中選出人.
(。┣笤谶x出的名學(xué)生中至少有名體質(zhì)為優(yōu)秀的概率;
(ⅱ)求選出的名學(xué)生中體質(zhì)為優(yōu)秀的人數(shù)不少于體質(zhì)為良好的人數(shù)的概率.

(Ⅰ)100;(Ⅱ)(。,(ⅱ)

解析試題分析:(Ⅰ)由莖葉圖可知抽取的30名學(xué)生中體質(zhì)優(yōu)秀的有10人,所以?xún)?yōu)秀率為,用總數(shù)乘以?xún)?yōu)秀率即可得優(yōu)秀的總?cè)藬?shù)。(Ⅱ)由莖葉圖可知抽取的30名學(xué)生中體質(zhì)優(yōu)秀的有10人,體質(zhì)為良好的15人。所以樣本中體質(zhì)為優(yōu)秀和良好的學(xué)生的比為。分層抽樣的特點(diǎn)是在各層按比例抽取,所以抽取的5人中有3人體質(zhì)為良好有2人體質(zhì)為優(yōu)秀。(。┖停áⅲ┲械母怕示鶎俟诺涓判,用例舉法分別求基本事件總數(shù)和所求事件包含的基本事件數(shù)即可。
試題解析:解:(Ⅰ)根據(jù)抽樣,估計(jì)該校高三學(xué)生中體質(zhì)為優(yōu)秀的學(xué)生人數(shù)有人.   3分
(Ⅱ)依題意,體質(zhì)為良好和優(yōu)秀的學(xué)生人數(shù)之比為
所以,從體質(zhì)為良好的學(xué)生中抽取的人數(shù)為,從體質(zhì)為優(yōu)秀的學(xué)生中抽取的人數(shù)為.                6分
(ⅰ)設(shè)在抽取的名學(xué)生中體質(zhì)為良好的學(xué)生為,,,體質(zhì)為優(yōu)秀的學(xué)生為,
則從名學(xué)生中任選人的基本事件有,,,,,,個(gè),其中“至少有名學(xué)生體質(zhì)為優(yōu)秀”的事件有,,,,,,個(gè).
所以在選出的名學(xué)生中至少有名學(xué)生體質(zhì)為優(yōu)秀的概率為.      10分
(ⅱ)“選出的名學(xué)生中體質(zhì)為優(yōu)秀的人數(shù)不少于體質(zhì)為良好的人數(shù)”的事件有,個(gè).
所以選出的名學(xué)生中體質(zhì)為優(yōu)秀的人數(shù)不少于體質(zhì)為良好的人數(shù)的概率為.13分
考點(diǎn):1分層抽樣;2古典概型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

根據(jù)空氣質(zhì)量指數(shù)API(為整數(shù))的不同,可將空氣質(zhì)量分級(jí)如下表:

API
0~50
51~
100
101~
150
151~
200
201~
250
251~
300
>300
級(jí) 別


1
2
1
2

狀 況
優(yōu)

輕微
污染
輕度
污染
中度
污染
中度
重污染
重度
污染
 





對(duì)某城市一年(365天)的空氣質(zhì)量進(jìn)行監(jiān)測(cè),獲得的API數(shù)據(jù)按照區(qū)間[0,50],(50,100],(100,150],(150,200],(200,250],(250,300]進(jìn)行分組,得到頻率分布直方圖如圖.

(1)求直方圖中x的值.
(2)計(jì)算一年中空氣質(zhì)量分別為良和輕微污染的天數(shù).
(3)求該城市某一周至少有2天的空氣質(zhì)量為良或輕微污染的概率.
(結(jié)果用分?jǐn)?shù)表示.
已知57=78125,27=128,++++=,365=73×5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為了比較兩種治療失眠癥的藥(分別稱(chēng)為A藥,B藥)的療效,隨機(jī)地選取20位患者服用A藥,20位患者服用B藥,這40位患者在服用一段時(shí)間后,記錄他們?nèi)掌骄黾拥乃邥r(shí)間(單位:h),試驗(yàn)的觀測(cè)結(jié)果如下:
服用A藥的20位患者日平均增加的睡眠時(shí)間:
0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5
2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4
服用B藥的20位患者日平均增加的睡眠時(shí)間:
3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4
1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5
(1)分別計(jì)算兩組數(shù)據(jù)的平均數(shù),從計(jì)算結(jié)果看,哪種藥的療效更好?
(2)根據(jù)兩組數(shù)據(jù)完成下面莖葉圖,從莖葉圖看,哪種藥的療效更好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

交通指數(shù)是交通擁堵指數(shù)的簡(jiǎn)稱(chēng),是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通指數(shù)為T(mén).其范圍為[0,10],分別有五個(gè)級(jí)別:T∈[0,2)暢通;T∈[2,4)基本暢通; T∈[4,6)輕度擁堵; T∈[6,
8)中度擁堵;T∈[8,10]嚴(yán)重?fù)矶,晚高峰時(shí)段,從某市交通指揮中心選取了市區(qū)20個(gè)交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制直方圖如圖所示.

(1)這20個(gè)路段輕度擁堵、中度擁堵的路段各有多少個(gè)?
(2)從這20個(gè)路段中隨機(jī)抽出的3個(gè)路段,用X表示抽取的中度擁堵的路段的個(gè)數(shù),求X的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某社團(tuán)組織20名志愿者利用周末和節(jié)假日參加社會(huì)公益活動(dòng),志愿者中,年齡在20至40歲的有12人,年齡大于40歲的有8人.
(1)在志愿者中用分層抽樣方法隨機(jī)抽取5名,年齡大于40歲的應(yīng)該抽取幾名?
(2)上述抽取的5名志愿者中任取2名,求取出的2人中恰有1人年齡大于40歲的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

由某種設(shè)備的使用年限(年)與所支出的維修費(fèi)(萬(wàn)元)的數(shù)據(jù)資料,算得,,,
(Ⅰ)求所支出的維修費(fèi)對(duì)使用年限的線性回歸方程;
(Ⅱ)判斷變量之間是正相關(guān)還是負(fù)相關(guān);
(Ⅲ)估計(jì)使用年限為8年時(shí),支出的維修費(fèi)約是多少.
附:在線性回歸方程中,,,其中,
樣本平均值,線性回歸方程也可寫(xiě)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

甲、乙兩名同學(xué)參加“漢字聽(tīng)寫(xiě)大賽”選拔性測(cè)試.在相同的測(cè)試條件下,兩人5次測(cè)試的成績(jī)(單位:分)如下表:

(Ⅰ)請(qǐng)畫(huà)出甲、乙兩人成績(jī)的莖葉圖. 你認(rèn)為選派誰(shuí)參賽更好?說(shuō)明理由(不用計(jì)算);
(Ⅱ)若從甲、乙兩人5次的成績(jī)中各隨機(jī)抽取一個(gè)成績(jī)進(jìn)行分析,求抽到的兩個(gè)成績(jī)中至少有一個(gè)高于
90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某學(xué)校900名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)拷橛?img src="http://thumb.zyjl.cn/pic5/tikupic/33/e/1dnhz3.png" style="vertical-align:middle;" />秒與秒之間,抽取其中50個(gè)樣本,將測(cè)試結(jié)果按如下方式分成五組:第一組,第二組,…,第五組,下圖是按上述分組方法得到的頻率分布直方圖.

(1)若成績(jī)小于14秒認(rèn)為優(yōu)秀,求該樣本在這次百米測(cè)試中成績(jī)優(yōu)秀的人數(shù);
(2)請(qǐng)估計(jì)學(xué)校900名學(xué)生中,成績(jī)屬于第四組的人數(shù);
(3)請(qǐng)根據(jù)頻率分布直方圖,求樣本數(shù)據(jù)的眾數(shù)和中位數(shù)(保留兩位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某種產(chǎn)品的廣告費(fèi)支出與銷(xiāo)售額(單位:萬(wàn)元)之間有如下對(duì)應(yīng)數(shù)據(jù):


2
4
5
6
8

30
40
60
50
70
(1)求回歸直線方程;
(2)試預(yù)測(cè)廣告費(fèi)支出為10萬(wàn)元時(shí),銷(xiāo)售額多大?
(3)在已有的五組數(shù)據(jù)中任意抽取兩組,求至少有一組數(shù)據(jù)其預(yù)測(cè)值與實(shí)際值之差的絕對(duì)值不超過(guò)5的概率.
(參考數(shù)據(jù):    
參考公式:線性回歸方程系數(shù):

查看答案和解析>>

同步練習(xí)冊(cè)答案