在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若其面積S=(b2+c2-a2),則∠A=   
【答案】分析:根據(jù)三角形的面積公式S=bcsinA,而已知S=(b2+c2-a2),兩者相等得到一個(gè)關(guān)系式,利用此關(guān)系式表示出sinA,根據(jù)余弦定理表示出cosA,發(fā)現(xiàn)兩關(guān)系式相等,得到sinA等于cosA,即tanA等于1,根據(jù)A的范圍利用特殊角的三角函數(shù)值即可得到A的度數(shù).
解答:解:由已知得:S=bcsinA=(b2+c2-a2
變形為:=sinA,
由余弦定理可得:cosA=,
所以cosA=sinA即tanA=1,又A∈(0,π),
則A=
故答案為:
點(diǎn)評(píng):此題考查學(xué)生靈活運(yùn)用三角形的面積公式及余弦定理化簡(jiǎn)求值,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大;
(2)若a=4,c=3,D為BC的中點(diǎn),求△ABC的面積及AD的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案