在平面直角坐標(biāo)系xOy中,橢圓C的中心為原點(diǎn),焦點(diǎn)F1,F(xiàn)2在x軸上,離心率為
1
2
.過F1的直線交橢圓C于A,B兩點(diǎn),且△ABF2的周長(zhǎng)為8.過定點(diǎn)M(0,3)的直線l1與橢圓C交于G,H兩點(diǎn)(點(diǎn)G在點(diǎn)M,H之間).
(Ⅰ) 求橢圓C的方程;
(Ⅱ)設(shè)直線l1的斜率k>0,在x軸上是否存在點(diǎn)P(m,0),使得以PG、PH為鄰邊的平行四邊形為菱形.如果存在,求出m的取值范圍;如果不存在,請(qǐng)說明理由.
(Ⅰ)設(shè)橢圓的方程為
x2
a2
+
y2
b2
=1(a>b>0)
,離心率e=
c
a
=
1
2
,
△ABF2的周長(zhǎng)為|AF1|+|AF2|+|AF1|+|AF2|=4a=8,
解得a=2,c=1,則b2=a2-c2=3,
所以橢圓的方程為
x2
4
+
y2
3
=1

(Ⅱ)直線l1的方程為y=kx+3(k>0),
x2
4
+
y2
3
=1
y=kx+3
,消去y并整理得(3+4k2)x2+24kx+24=0(*),
△=(24k)2-4×24×(3+4k2)>0,解得k>
6
2
,
設(shè)橢圓的弦GH的中點(diǎn)為N(x0,y0),
則“在x軸上是否存在點(diǎn)P(m,0),使得以PG、PH為鄰邊的平行四邊形為菱形.”等價(jià)于“在x軸上是否存在點(diǎn)P(m,0),使得PN⊥l1”.
設(shè)G(x1,y1),H(x2,y2),由韋達(dá)定理得,x1+x2=-
24k
3+4k2
,
所以x0=
x1+x2
2
=-
12k
3+4k2
,∴y0=kx0+3═
9
3+4k2

N(-
12k
3+4k2
,
9
3+4k2
)
,kPN=-
9
12k+m(3+4k2)

所以,-
9
12k+m(3+4k2)
•k=-1
,解得m=-
3k
3+4k2
(k>
6
2
)

m′(k)=
3(2k-
3
)(2k+
3
)
(3+4k2)2
3(
6
-
3
)(2k+
3
)
(3+4k2)2
>0

所以,函數(shù)m=-
3k
3+4k2
(k>
6
2
)
在定義域(
6
2
,+∞)
單調(diào)遞增,m(
6
2
)=-
6
6
,
所以滿足條件的點(diǎn)P(m,0)存在,m的取值范圍為(-
6
6
,+∞)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經(jīng)過坐標(biāo)原點(diǎn)O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點(diǎn),點(diǎn)P在圓C上,且滿足PF=4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).若點(diǎn)A的橫坐標(biāo)是
3
5
,點(diǎn)B的縱坐標(biāo)是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,若焦點(diǎn)在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設(shè)直線AC與BD的交點(diǎn)為P,求動(dòng)點(diǎn)P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設(shè)橢圓C的上下頂點(diǎn)分別為A1,A2,Q是橢圓C上異于A1,A2的任一點(diǎn),直線QA1,QA2分別交x軸于點(diǎn)S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案