【題目】若存在常數(shù),使得數(shù)列滿足對(duì)一切恒成立,則稱為“可控?cái)?shù)列”.
(1) 若數(shù)列的通項(xiàng)公式為,試判斷數(shù)列是否為“可控?cái)?shù)列”?并說明理由;
(2) 若是首項(xiàng)為5的“可控?cái)?shù)列”,且單調(diào)遞減,問是否存在常數(shù),使?若存在,求出的值;若不存在,請(qǐng)說明理由;
(3) 若“可控?cái)?shù)列”的首項(xiàng)為2,,求不同取值的個(gè)數(shù)及最大值.(直接寫出結(jié)果)
【答案】(1) 為“可控?cái)?shù)列”; (2) ;(3) 的不同取值個(gè)數(shù)是2018,最大值為2019
【解析】
(1)依據(jù)定義驗(yàn)證即可.
(2)利用為可控?cái)?shù)列且單調(diào)遞減得到,再利用累加法求得數(shù)列的通項(xiàng)為,分別討論和時(shí)的極限后可得的大小.
(3)當(dāng)為遞增數(shù)列時(shí), 最大且最大值為,當(dāng)為遞減數(shù)列時(shí),最小且最小值值為,又必為奇數(shù),故不同的取值個(gè)數(shù)為2018.
(1) ,.故為“可控?cái)?shù)列”.
(2) 假設(shè)存在常數(shù)滿足題意.
由是單調(diào)遞減的“可控?cái)?shù)列”,得.
累加,得.
當(dāng)時(shí),,不合題意.
當(dāng)時(shí),,.
令,得.
故的值為.
(3) 的不同取值個(gè)數(shù)是2018,最大值為2019.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在對(duì)人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運(yùn)動(dòng);男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動(dòng).
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;
(2)根據(jù)所給的獨(dú)立檢驗(yàn)臨界值表,你最多能有多少把握認(rèn)為性別與休閑方式有關(guān)系?附:獨(dú)立檢驗(yàn)臨界值表
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某書店共有韓寒的圖書6種,其中價(jià)格為25元的有2種,18元的有3種,16元的有1種.書店若把這6種韓寒的圖書打包出售,據(jù)統(tǒng)計(jì)每套的售價(jià)與每天的銷售數(shù)量如下表所示:
售價(jià)x/元 | 105 | 108 | 110 | 112 |
銷售數(shù)量y/套 | 40 | 30 | 25 | 15 |
(1)根據(jù)上表,利用最小二乘法得到回歸直線方程,求;
(2)若售價(jià)為100元,則每天銷售的套數(shù)約為多少(結(jié)果保留到整數(shù))?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上的函數(shù),它的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,當(dāng)x≤1時(shí),f(x)=2xe﹣x(e為自然對(duì)數(shù)的底數(shù)),則f(2+3ln2)的值為( )
A.48ln2
B.40ln2
C.32ln2
D.24ln2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)復(fù)數(shù)z1=(a2-4sin2θ)+(1+2cos θ)i,a∈R,θ∈(0,π),z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第一象限,且z=-3+4i.
(1)求z2及|z2|.
(2)若z1=z2,求θ與a2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解籃球愛好者小張的投籃命中率與打籃球時(shí)間之間的關(guān)系,下表記錄了小張某月1號(hào)到5號(hào)每天打籃球時(shí)間(單位:小時(shí))與當(dāng)天投籃命中率之間的關(guān)系:
時(shí)間 | 1 | 2 | 3 | 4 | 5 |
命中率 | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
(1)求小張這天的平均投籃命中率;
(2)利用所給數(shù)據(jù)求小張每天打籃球時(shí)間(單位:小時(shí))與當(dāng)天投籃命中率之間的線性回歸方程;(參考公式:)
(3)用線性回歸分析的方法,預(yù)測(cè)小李該月號(hào)打小時(shí)籃球的投籃命中率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年10月18日至24日,中國(guó)共產(chǎn)黨第十九次全國(guó)人民代表大會(huì)在北京順利召開.大會(huì)期間,北京某高中舉辦了一次“喜迎十九大”的讀書讀報(bào)知識(shí)競(jìng)賽,參賽選手為從高一年級(jí)和高二年級(jí)隨機(jī)抽取的各100名學(xué)生.圖1和圖2分別是高一年級(jí)和高二年級(jí)參賽選手成績(jī)的頻率分布直方圖.
(1)分別計(jì)算參加這次知識(shí)競(jìng)賽的兩個(gè)年級(jí)學(xué)生的平均成績(jī);
(2)若稱成績(jī)?cè)?8分以上的學(xué)生知識(shí)淵博,試以上述數(shù)據(jù)估計(jì)該高一、高二兩個(gè)年級(jí)學(xué)生的知識(shí)淵博率;
(3)完成下面2×2列聯(lián)表,并回答能否在犯錯(cuò)誤的概率不超過0.010的前提下,認(rèn)為高一、高二兩個(gè)年級(jí)學(xué)生這次讀書讀報(bào)知識(shí)競(jìng)賽的成績(jī)有差異.
分類 | 成績(jī)低于60分人數(shù) | 成績(jī)不低于60分人數(shù) | 總計(jì) |
高一年級(jí) | |||
高二年級(jí) | |||
總計(jì) |
附:
P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
K2=.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的離心率為 ,左右焦點(diǎn)分別為F1 , F2 , 以橢圓短軸為直徑的圓與直線 相切.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過點(diǎn)F1、斜率為k1的直線l1與橢圓E交于A,B兩點(diǎn),過點(diǎn)F2、斜率為k2的直線l2與橢圓E交于C,D兩點(diǎn),且直線l1 , l2相交于點(diǎn)P,若直線OA,OB,OC,OD的斜率kOA , kOB , kOC , kOD滿足kOA+kOB=kOC+kOD , 求證:動(dòng)點(diǎn)P在定橢圓上,并求出此橢圓方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com