分析 首先將所給式子平方求出2cosαsinα的值,進(jìn)而結(jié)合α的范圍得出cosα-sinα>0,然后求出cosα-sinα的值,再利用二倍角的余弦公式求出結(jié)果.
解答 (本題滿分為12分)
解:∵cosα+sinα=$\frac{\sqrt{5}}{5}$,⇒(cosα+sinα)2=$\frac{1}{5}$,⇒1+2cosαsinα=$\frac{1}{5}$,⇒2cosαsinα=-$\frac{4}{5}$,…(3分)
又∵α∈(-$\frac{π}{2}$,$\frac{π}{2}$),
∴cosα>0,可得:sinα<0,⇒α∈(-$\frac{π}{2}$,0),⇒cosα-sinα>0. …(6分)
又∵(cosα-sinα)2=1-2sinαcosα=$\frac{9}{5}$,從而有⇒cosα-sinα=$\frac{3\sqrt{5}}{5}$,…(9分)
∴cos2α=cos2α-sin2α=(cosα-sinα)(cosα+sinα)=$\frac{3\sqrt{5}}{5}$×$\frac{\sqrt{5}}{5}$=$\frac{3}{5}$.
故答案為:$\frac{3}{5}$.…(12分)
點(diǎn)評(píng) 本題考查了二倍角的余弦,解題過程中要注意根據(jù)角的范圍判斷角的符號(hào),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $A_5^2{6^4}$ | B. | $C_5^2{6^4}$ | C. | $A_5^2A_4^4$ | D. | $C_5^2A_4^4$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com