(2012•汕頭二模)運(yùn)行如圖所示的程序框圖,若輸入n=4,則輸出S的值為
11
11
分析:由圖知,每次進(jìn)入循環(huán)體后,S的值被施加的運(yùn)算是S加上i,故由此運(yùn)算規(guī)律進(jìn)行計(jì)算,經(jīng)過(guò)5次運(yùn)算后輸出的結(jié)果是11即可.
解答:解:由圖知運(yùn)算規(guī)則是對(duì)S=S+i,故若輸入n=4,則
第一次進(jìn)入循環(huán)體后S=0+1=1,
第二次進(jìn)入循環(huán)體后S=1+1=2,
第三次進(jìn)入循環(huán)體后S=2+2=4,
第四次進(jìn)入循環(huán)體后S=4+3=7,
第五次進(jìn)入循環(huán)體后S=7+4=11,此時(shí)i=5,退出循環(huán).
則輸出S的值為 11
故答案為:11.
點(diǎn)評(píng):本題考查循環(huán)結(jié)構(gòu),已知運(yùn)算規(guī)則與最后運(yùn)算結(jié)果,求運(yùn)算次數(shù)的一個(gè)題,是算法中一種常見(jiàn)的題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•汕頭二模)已知函數(shù)f(x)=x2-(a+2)x+alnx,其中常數(shù)a>0.
(1)當(dāng)a>2時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)a=4時(shí),若函數(shù)y=f(x)-m有三個(gè)不同的零點(diǎn),求m的取值范圍;
(3)設(shè)定義在D上的函數(shù)y=h(x)在點(diǎn)p(x0,h(x0))處的切線方程為l:y=g(x),當(dāng)x≠x0時(shí),若
h(x)-g(x)x-x0
>0
在D內(nèi)恒成立,則稱(chēng)P為函數(shù)y=h(x)的“類(lèi)對(duì)稱(chēng)點(diǎn)”,請(qǐng)你探究當(dāng)a=4時(shí),函數(shù)y=f(x)是否存在“類(lèi)對(duì)稱(chēng)點(diǎn)”,若存在,請(qǐng)最少求出一個(gè)“類(lèi)對(duì)稱(chēng)點(diǎn)”的橫坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•汕頭二模)在數(shù)列{an}中,a1=1、a2=
1
4
,且an+1=
(n-1)an
n-an
(n≥2)

(Ⅰ) 求a3、a4,猜想an的表達(dá)式,并加以證明;
(Ⅱ) 設(shè)bn=
anan+1
an
+
an+1
,求證:對(duì)任意的自然數(shù)n∈N*,都有b1+b2+…+bn
n
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•汕頭二模)已知函數(shù)f(x)=2cos2
x
2
-
3
sinx

(Ⅰ)求函數(shù)f(x)的最小正周期和值域;
(Ⅱ)若a為第二象限角,且f(a-
π
3
)=
1
3
,求
cos2a
1-tana
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•汕頭二模)從1,2,3,4,5中不放回地依次取2個(gè)數(shù),事件A=“第一次取到的是奇數(shù)”,B=“第二次取到的是奇數(shù)”,則P(B|A)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•汕頭二模)雙曲線x2-
y24
=1的漸近線方程是
y=±2x
y=±2x

查看答案和解析>>

同步練習(xí)冊(cè)答案