在底面邊長(zhǎng)為2,高為1的正四梭柱ABCD=A1B1C1D1中,E,F(xiàn)分別為BC,C1D1的中點(diǎn).
(1)求異面直線A1E,CF所成的角;
(2)求平面A1EF與平面ADD1A1所成銳二面角的余弦值.
(1)(2)
解析試題分析:(1)以D為原點(diǎn)建立空間直角坐標(biāo)系,求出各點(diǎn)坐標(biāo),進(jìn)而求出異面直線A1E,CF的方向向量,代入向量夾角公式,可得求異面直線A1E,CF所成的角;
(2)求平面A1EF與平面ADD1A1的法向量,代入向量夾角公式,可得二面角的余弦值.
以D為原點(diǎn)建立空間直角坐標(biāo)系
(1)A1(2,0,1),E(1,2,0),C(0,2,0),F(xiàn)(0,1,1),
設(shè)異面直線A1E,CF所成的角為θ,則
,
即3=••cosθ
解得cosθ=
解,
所以,所求異面直線的夾角為
(2),設(shè)平面A1EF的法向量為,則
,
令x=1,則平面A1EF的一個(gè)法向量為,
平面ADD1A1的一個(gè)法向量為,
設(shè)平面A1EF與平面ADD1A1所成銳二面角為α,則
由,
即2=•1•cosα
解得:
故平面A1EF與平面ADD1A1所成銳二面角的余弦值為
考點(diǎn):用空間向量求平面間的夾角;用空間向量求直線間的夾角、距離
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是用空間向量求平面間的夾角,用空間向量求直線間的夾角,建立空間坐標(biāo)系,將空間異面直線夾角問(wèn)題及二面角問(wèn)題轉(zhuǎn)化為向量夾角問(wèn)題是解答的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在長(zhǎng)方體AC1中,AB=BC=2,,點(diǎn)E、F分別是面A1C1、面BC1的中心.
(1)求證:BE//平面D1AC;
(2)求證:AF⊥BE;
(3)求異面直線AF與BD所成角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1,F分別是棱AD,AA1,AB的中點(diǎn).
(1)證明:直線EE1∥平面FCC1;
(2)求二面角B-FC1-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐中,是正三角形,四邊形是矩形,且平面平面,,.
(Ⅰ)若點(diǎn)是的中點(diǎn),求證:平面;
(II)試問(wèn)點(diǎn)在線段上什么位置時(shí),二面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知四棱錐P-ABCD的底面ABCD是邊長(zhǎng)為1的正方形,PD⊥底面ABCD,PD="AD."
(Ⅰ)求證:BC∥平面PAD;
(Ⅱ)若E、F分別為PB,AD的中點(diǎn),求證:EF⊥BC;
(Ⅲ)求二面角C-PA-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,邊長(zhǎng)為的等邊△所在的平面垂直于矩形所在的平面, ,為的中點(diǎn).
(1)證明:;
(2)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直三棱柱ABC—A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別是A1B1,A1A的中點(diǎn);
(1)求
(2)求
(3)
(4)求CB1與平面A1ABB1所成的角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com