16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{f(x+2),x≤-1}\\{2x+2,-1<x<1}\\{{2}^{x}-4,x≥1}\end{array}\right.$,則f[f(-2016)]=0.

分析 利用分段函數(shù),結(jié)合函數(shù)的周期,轉(zhuǎn)化求解即可.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{f(x+2),x≤-1}\\{2x+2,-1<x<1}\\{{2}^{x}-4,x≥1}\end{array}\right.$,
可知x≤-1時,函數(shù)的周期為2,
f(-2016)=f(-2)=f(0)=2.
f[f(-2016)]=f(2)=22-4=0.
故答案為:0.

點評 本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

6.P點坐標為(cos2015°,tan2015°),則P在第_____象限.(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{2}cost}\\{y=\sqrt{2}sint}\end{array}\right.$(t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$,判斷直線l與曲線C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.若函數(shù)f(x),g(x)分別是R上的奇函數(shù)、偶函數(shù),且滿足f(x)+g(x)=ex,
(Ⅰ)求f(x),g(x)的解析式;
(Ⅱ)證明g(x)在x∈(0,+∞)為增函數(shù);
(Ⅲ)求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.求值:
(1)sin795°;         
(2)(tan10°-$\sqrt{3}$)•$\frac{{sin{{80}°}}}{{cos{{40}°}}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.直線y=x+b平分圓x2+y2+4x-4y-8=0的周長,則b=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知向量$\overrightarrow{a}$=(cos15°,sin15°),$\overrightarrow$=(cos75°,sin75°),則|a-2b|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.如圖,已知棱長為4的正方體ABCD-A'B'C'D',M是正方形BB'C'C的中心,P是△A'C'D內(nèi)(包括邊界)的動點,滿足PM=PD,則點P的軌跡長度為$\sqrt{14}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=cosx(cosx+$\sqrt{3}$sinx).
(Ⅰ)求f(x)的最小值;
(Ⅱ)在△ABC中,角A,B,C的對邊分別是a,b,c,S△ABC=$\frac{3\sqrt{3}}{4}$,c2=7,若f(C)=1,求△ABC的周長.

查看答案和解析>>

同步練習冊答案